【題目】“干支紀年法”是中國歷法上自古以來使用的紀年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字開始,“地支”以“子”字開始,兩者按干支順序相配,組成了干支紀年法,其相配順序為:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸末,甲申、乙酉、丙戌…癸巳,…,共得到個組成,周而復始,循環(huán)記錄。2014年是“干支紀年法”中的甲午年,那么2020年是“干支紀年法”中的()

A. 己亥年 B. 戊戌年 C. 庚子年 D. 辛丑年

【答案】C

【解析】2015年是“干支紀年法”中的乙未年,2016年是“干支紀年法”中的丙申年,
那么2017年是“干支紀年法”中的丁酉年,2018是戊戌年,2019年是己亥年,以此類推記得到2020年是庚子年。

故答案為:C。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2sinωxcosωx+2 sin2ωx﹣ (ω>0)的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移 個單位長度,再向上平移1個單位長度,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在 上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,右焦點為。斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為。

1)求橢圓的方程;

2)求的面積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的短軸長為2,離心率e=
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=kx+m與橢圓交于不同的兩點A,B,與圓x2+y2= 相切于點M.
(i)證明:OA⊥OB(O為坐標原點);
(ii)設λ= ,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=1,AD= ,P矩形內(nèi)的一點,且AP= ,若 ,(λ,μ∈R),則λ+ μ的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)在R上存在導數(shù)f′(x),對任意的x∈R,有f(﹣x)+f(x)=x2 , 且x∈(0,+∞)時,f′(x)>x.若f(2﹣a)﹣f(a)≥2﹣2a,則實數(shù)a的取值范圍為(
A.[1,+∞)
B.(﹣∞,1]
C.(﹣∞,2]
D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,,其中是不等于零的常數(shù)。

(1)寫出的定義域;

(2)求的單調(diào)遞增區(qū)間;

(3)已知函數(shù),定義:,.其中,表示函數(shù)上的最小值,表示函數(shù)上的最大值.例如:,則,,,,當時,設,不等式恒成立,求,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖ABCD是平面四邊形,∠ADB=∠BCD=90°,AB=4,BD=2.
(Ⅰ)若BC=1,求AC的長;
(Ⅱ)若∠ACD=30°,求tan∠BDC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=ln(x2﹣4x+3)的單調(diào)減區(qū)間為( 。

A. (2,+∞) B. (3,+∞) C. (﹣∞,2) D. (﹣∞,1)

查看答案和解析>>

同步練習冊答案