(文科)雙曲線
x2
144
-
y2
b2
=1的兩條漸近線互相垂直,那么它的離心率為( 。
分析:設(shè)出雙曲線的標(biāo)準(zhǔn)方程,則可表示出其漸近線的方程,根據(jù)兩條直線垂直,推斷出其斜率之積為-1進(jìn)而求得b的值,進(jìn)而根據(jù)c=
a2+b2
求得a和c的關(guān)系,則雙曲線的離心率可得.
解答:解:∵兩條漸近線互相垂直,∴
b
12
×(-
b
12
)=-1
,∴b2=144,∴c2=288,∴e=
2

故選A.
點評:本題主要考查了雙曲線的簡單性質(zhì).考查了學(xué)生轉(zhuǎn)化和化歸思想和對雙曲線基礎(chǔ)知識的把握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文科)雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦點分別為F1、F2,過點 F1作傾斜角為30°的直線l,l與雙曲線的右支交于點P,若線段PF1的中點M落在y軸上,則雙曲線的漸近線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(文科)雙曲線
x2
144
-
y2
b2
=1的兩條漸近線互相垂直,那么它的離心率為(  )
A.
2
B.
3
C.2D.
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(文科)雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦點分別為F1、F2,過點 F1作傾斜角為30°的直線l,l與雙曲線的右支交于點P,若線段PF1的中點M落在y軸上,則雙曲線的漸近線方程為( 。
A.y=±xB.y=±
3
x
C.y=±
2
x
D.y=±2x
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省德州市某中學(xué)高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

(文科)雙曲線(a>0,b>0)的左、右焦點分別為F1、F2,過點 F1作傾斜角為30°的直線l,l與雙曲線的右支交于點P,若線段PF1的中點M落在y軸上,則雙曲線的漸近線方程為( )

A.y=±
B.y=±
C.y=±
D.y=±2

查看答案和解析>>

同步練習(xí)冊答案