使得函數(shù)f(x)=lnx+
1
2
x-2
有零點(diǎn)的一個(gè)區(qū)間是( 。
分析:由題意可得函數(shù)的定義域(0,+∞),令f(x)=lnx+
1
2
x-2,然后根據(jù)f(a)•f(b)<0,結(jié)合零點(diǎn)判定定理可知函數(shù)在(a,b)上存在一個(gè)零點(diǎn),可得結(jié)論.
解答:解:由題意可得函數(shù)的定義域(0,+∞),令f(x)=lnx+
1
2
x-2
∵f(1)=-
3
2
<0,f(2)=ln2-1<0,f(3)=ln3-
1
2
>0
由函數(shù)零點(diǎn)的判定定理可知,函數(shù)y=f(x)=lnx+
1
2
x-2在(2,3)上有一個(gè)零點(diǎn)
故選C.
點(diǎn)評(píng):本題主要考查了函數(shù)的零點(diǎn)判定定理的應(yīng)用,同時(shí)考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
(x2-2ax)ex,x>0
bx,x≤0
,g(x)=clnx+b
,且x=
2
是函數(shù)y=f(x)的極值點(diǎn).
(I)求實(shí)數(shù)a的值,并確定實(shí)數(shù)m的取值范圍,使得函數(shù)?(x)=f(x)-m有兩個(gè)零點(diǎn);
(II)是否存在這樣的直線l,同時(shí)滿(mǎn)足:①l是函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線;  ②l與函數(shù)y=g(x)的圖象相切于點(diǎn)P(x0,y0),x0∈[e-1,e],如果存在,求實(shí)數(shù)b的取值范圍;不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山西省忻州一中2010屆高三第三次四校聯(lián)考數(shù)學(xué)理科試題 題型:044

設(shè)函數(shù)h(x)=x2,(x)=2elnx(e為自然對(duì)數(shù)的底).

(1)求函數(shù)F(x)=h(x)-x的極值;

(2)若存在常數(shù)k和b,使得函數(shù)f(x)和g(x)對(duì)其定義域內(nèi)的任意實(shí)數(shù)x分別滿(mǎn)足f(x)≥kx+b和g(x)≤kx+b,則稱(chēng)直線l:y=kx+b為函數(shù)f(x)和g(x)的“隔離直線”.試問(wèn):函數(shù)h(x)和(x)是否存在“隔離直線”?若存在,求出“隔離直線”方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:重慶市重慶一中2012屆高三9月月考數(shù)學(xué)理科試題 題型:044

若存在實(shí)數(shù)k和b,使得函數(shù)f(x)與g(x)對(duì)其定義域上的任意實(shí)數(shù)x分別滿(mǎn)足:f(x)≥kx+b和g(x)≤kx+b,則稱(chēng)直線l:y=kx+b為f(x)與g(x)的“和諧直線”.已知h(x)=x2,(x)=2elnx,(e為自然對(duì)數(shù)的底數(shù));

(1)F(x)=h(x)-(x)的極值;

(2)函數(shù)h(x)和(x)是否存在和諧直線?若存在,求出此和諧直線方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若存在實(shí)常數(shù)k和b,使得函數(shù)f(x)和g(x)對(duì)其定義域上的任意實(shí)數(shù)x分別滿(mǎn)足:f(x)≥kx+b和g(x)≤kx+b,則稱(chēng)直線l:y=kx+b為f(x)和g(x)的“隔離直線”.已知h(x)=x2,φ(x)=2elnx(其中e為自然對(duì)數(shù)的底數(shù)).

(1)求F(x)=h(x)-φ(x)的極值;

(2)函數(shù)h(x)和φ(x)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:專(zhuān)項(xiàng)題 題型:填空題

若存在實(shí)常數(shù)k和b,使得函數(shù)f(x)和g(x)對(duì)其定義域上的任意實(shí)數(shù)x分別滿(mǎn)足:f(x)≥kx+b和g(x)≤kx+b,則稱(chēng)直線l:y=kx+b為f(x)和g(x)的“隔離直線”。已知h(x)=x2,φ(x)=2elnx(其中e為自然對(duì)數(shù)的底數(shù)),根據(jù)你的數(shù)學(xué)知識(shí),推斷h(x)與φ(x)間的隔離直線方程為(    )。

查看答案和解析>>

同步練習(xí)冊(cè)答案