設函數(shù), 其中,的導函數(shù).
(Ⅰ)若,求函數(shù)的解析式;
(Ⅱ)若,函數(shù)的兩個極值點為滿足. 設, 試求實數(shù)的取值范圍.

(1)  (2)

解析試題分析:(Ⅰ)據(jù)題意, 1分
知,
據(jù)題意得   2分
解得   4分
為所求. 5分
(Ⅱ)據(jù)題意,,則
是方程的兩根,且
  即   7分
則點的可行區(qū)域如圖  10分


的幾何意義為點P與點的距離的平方. 11分
觀察圖形知點,A到直線的距離的平方的最小值  
的取值范圍是  13分.
考點:導數(shù)的運用
點評:解決的關鍵是利用導數(shù)的運算以及函數(shù)與方程根的問題來得到不等式組來求解ab的區(qū)域,進而結合幾何意義來得到范圍。屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求的最小值;
(2)若對所有都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分) 設函數(shù).
(Ⅰ)判斷能否為函數(shù)的極值點,并說明理由;
(Ⅱ)若存在,使得定義在上的函數(shù)處取得最大值,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,,
(1)若對內的一切實數(shù),不等式恒成立,求實數(shù)的取值范圍;
(2)當時,求最大的正整數(shù),使得對是自然對數(shù)的底數(shù))內的任意個實數(shù)都有成立;
(3)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的最小值為0,其中。
(1)求a的值
(2)若對任意的,有成立,求實數(shù)k的最小值
(3)證明

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x3+x-16,
(1)求曲線y=f(x)在點(2,-6)處的切線的方程;
(2)直線l為曲線y=f(x)的切線,且經(jīng)過原點,求直線l的方程及切點坐標;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

計算由曲線,直線以及兩坐標軸所圍成的圖形的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

f(x)=a ln xx+1,其中a∈R,曲線yf(x)在點(1,f(1))處的切線垂直于y軸.(1)求a的值;(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當a=1時,求函數(shù)在區(qū)間上的最小值和最大值;
(Ⅱ)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)a的取值范圍。

查看答案和解析>>

同步練習冊答案