【題目】已知數(shù)列為公差不為的等差數(shù)列, 為前項和, 和的等差中項為,且.令數(shù)列的前項和為.
(1)求及;
(2)是否存在正整數(shù)成等比數(shù)列?若存在,求出所有的的值;若不存在,請說明理由.
【答案】(Ⅰ),
(Ⅱ)當可以使成等比數(shù)列.
【解析】試題分析:(1)由于和的等差中項為,可得,又.利用等差數(shù)列通項公式將其轉(zhuǎn)化為表示,解方程組求出其值,進而得到,結(jié)合通項公式特點可采用裂項相消法求和;
(2)假設(shè)存在正整數(shù)m,n(1<m<n),使得T1,Tm,Tn成等比數(shù)列,則,當m=2時,化為,解得一組m,n的值滿足條件.當m≥3時,由于關(guān)于m單調(diào)遞增,可知,化為5n+27≤0,由于n>m>1,可知上式不成立
試題解析:(Ⅰ)因為為等差數(shù)列,設(shè)公差為,則由題意得
整理得
所以
由
所以
(Ⅱ)假設(shè)存在
由(Ⅰ)知, ,所以
若成等比,則有
,(1)
因為,所以,
因為,當時,帶入(1)式,得;
綜上,當可以使成等比數(shù)列.
科目:高中數(shù)學 來源: 題型:
【題目】已知點在橢圓內(nèi),過的直線與橢圓相交于A,B兩點,且點是線段AB的中點,O為坐標原點.
(Ⅰ)是否存在實數(shù)t,使直線和直線OP的傾斜角互補?若存在,求出的值,若不存在,試說明理由;
(Ⅱ)求面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知橢圓:,其中,,分別為其左,右焦點,點是橢圓上一點,,且.
(1)當,,且時,求的值;
(2)若,試求橢圓離心率的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2x+2﹣x ,
(1)判斷函數(shù)的奇偶性;
(2)用函數(shù)單調(diào)性定義證明:f(x)在(0,+∞)上為單調(diào)增函數(shù);
(3)若f(x)=52﹣x+3,求x的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有一枚質(zhì)地均勻的骰子,連續(xù)投擲兩次,計算:
(1)一共有多少種不同的結(jié)果?
(2)其中向上的點數(shù)之和是7的結(jié)果有多少種?
(3)向上的點數(shù)之和是7的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有道數(shù)學題,其中道選擇題, 道填空題,小明從中任取道題,求:
(1)所取的道題都是選擇題的概率;
(2)所取的道題不是同一種題型的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,將數(shù)字1,2,3,…, ()全部填入一個2行列的表格中,每格填一個數(shù)字,第一行填入的數(shù)字依次為, ,…, ,第二行填入的數(shù)字依次為, ,…, .記.
(Ⅰ)當時,若, , ,寫出的所有可能的取值;
(Ⅱ)給定正整數(shù).試給出, ,…, 的一組取值,使得無論, ,…, 填寫的順序如何, 都只有一個取值,并求出此時的值;
(Ⅲ)求證:對于給定的以及滿足條件的所有填法, 的所有取值的奇偶性相同.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面給出了四個類比推理:
①為實數(shù),若則;類比推出: 為復數(shù),若則.
② 若數(shù)列是等差數(shù)列, ,則數(shù)列也是等差數(shù)列;類比推出:若數(shù)列是各項都為正數(shù)的等比數(shù)列, ,則數(shù)列也是等比數(shù)列.
③ 若則; 類比推出:若為三個向量,則.
④ 若圓的半徑為,則圓的面積為;類比推出:若橢圓的長半軸長為,短半軸長為,則橢圓的面積為.上述四個推理中,結(jié)論正確的是( )
A. ① ② B. ② ③ C. ① ④ D. ② ④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com