分析 (1)利用數(shù)列遞推式,再寫一式,兩式相減,從而可求數(shù)列{an}的通項(xiàng)公式;
(2)利用錯(cuò)位相減法求數(shù)列的和,即可證得結(jié)論.
解答 解:(1)由${S_n}={n^2}+n$,則Sn-1=(n-1)2+(n-1)
當(dāng)n≥2時(shí),dn=Sn-Sn-1=2n
且n=1滿足上式
所以a2=d2=4,a3=d4=8
所以${a_n}={2^n}$,
(2)令${T_n}={b_1}+{b_2}+…+{b_n}=\frac{1}{2}+\frac{1}{2^2}+\frac{3}{2^3}+…+\frac{n}{2^n}$,
$\frac{1}{2}{T_n}=\frac{1}{2^2}+\frac{2}{2^3}+…+\frac{n-1}{2^n}+\frac{n}{{{2^{n+1}}}}$,
$\frac{1}{2}{T_n}=\frac{1}{2}+\frac{1}{2^2}+…\frac{1}{2^n}-\frac{n}{{{2^{n+1}}}}$,
所以${T_n}=1+\frac{1}{2}+…+\frac{1}{{{2^{n-1}}}}-\frac{n}{2^n}$=$2-(n+2){(\frac{1}{2})^n}<2$
點(diǎn)評 本題考查數(shù)列的通項(xiàng)的求法,注意運(yùn)用下標(biāo)變換法,同時(shí)考查數(shù)列的求和方法:錯(cuò)位相減法求和和不等式的性質(zhì),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{\sqrt{3}}{4}$ | C. | $\frac{3}{8}$ | D. | $\frac{\sqrt{3}}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=e-x | B. | y=ln(-x) | C. | y=x3 | D. | $y=\frac{1}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{7}$ | B. | $\frac{3}{7}$ | C. | $\frac{5}{7}$ | D. | $\frac{6}{7}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com