【題目】設(shè)集合的元素均為實(shí)數(shù),若對(duì)任意,存在,使得,則稱(chēng)元素個(gè)數(shù)最少的孿生集;稱(chēng)孿生集孿生集“2級(jí)孿生集;稱(chēng)“2級(jí)孿生集孿生集“3級(jí)孿生集,依此類(lèi)推……

1)設(shè),直接寫(xiě)出集合孿生集

2)設(shè)元素個(gè)數(shù)為的集合孿生集分別為,若使集合中元素個(gè)數(shù)最少且所有元素之和為2,證明:中所有元素之和為

3)若,請(qǐng)直接寫(xiě)出級(jí)孿生集的個(gè)數(shù),及所有級(jí)孿生集的并集的元素個(gè)數(shù).

【答案】1,;(2)證明見(jiàn)解析;(3,

【解析】

1)根據(jù)集合定義直接得到答案.

2)將集合中元素從小到大排列:,則孿生集

,構(gòu)成公差為2的等差數(shù)列,計(jì)算得到答案.

3級(jí)孿生集的個(gè)數(shù)為,計(jì)算元素個(gè)數(shù)得到答案.

1

2)將集合中元素從小到大排列:

則其孿生集,,設(shè)集合,

由于,,,

因此集合中元素個(gè)數(shù),

,則有,

因此構(gòu)成公差為2的等差數(shù)列,

所以,進(jìn)而

3級(jí)孿生集的個(gè)數(shù)為

所有級(jí)孿生集的并集的元素個(gè)數(shù)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在高山滑雪運(yùn)動(dòng)的曲道賽項(xiàng)目中,運(yùn)動(dòng)員從高處(起點(diǎn))向下滑,在滑行中運(yùn)動(dòng)員要穿過(guò)多個(gè)高約0.75米,寬46米的旗門(mén),規(guī)定:運(yùn)動(dòng)員不經(jīng)過(guò)任何一個(gè)旗門(mén),都會(huì)被判一次“失格”,滑行時(shí)間會(huì)被增加,而所用時(shí)間越少,則排名越高.已知在參加比賽的運(yùn)動(dòng)員中,有五位運(yùn)動(dòng)員在滑行過(guò)程中都有三次“失格”,其中

1)甲在滑行過(guò)程中依次沒(méi)有經(jīng)過(guò),三個(gè)旗門(mén);

2)乙在滑行過(guò)程中依次沒(méi)有經(jīng)過(guò),三個(gè)旗門(mén);

3)丙在滑行過(guò)程中依次沒(méi)有經(jīng)過(guò),,三個(gè)旗門(mén);

4)丁在滑行過(guò)程中依次沒(méi)有經(jīng)過(guò),三個(gè)旗門(mén);

5)戊在滑行過(guò)程中依次沒(méi)有經(jīng)過(guò),三個(gè)旗門(mén).

根據(jù)以上信息,,,,,,,8個(gè)旗門(mén)從上至下的排列順序共有( )種可能.

A.6B.7C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,函數(shù)上有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

2)若常數(shù),且對(duì)任何,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

(1)設(shè)的極值點(diǎn),求實(shí)數(shù)的值,并求的單調(diào)區(qū)間:

(2)時(shí),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】老王有一塊矩形舊鐵皮,其中,他想充分利用這塊鐵皮制作一個(gè)容器,他有兩個(gè)設(shè)想:設(shè)想1是沿矩形的對(duì)角線(xiàn)折起,使移到點(diǎn),且在平面上的射影恰好在上,再利用新購(gòu)鐵皮縫制其余兩個(gè)面得到一個(gè)三棱錐;設(shè)想2是利用舊鐵皮做側(cè)面,新購(gòu)鐵皮做底面,縫制一個(gè)高為,側(cè)面展開(kāi)圖恰為矩形的圓柱體;

1)求設(shè)想1得到的三棱錐中二面角的大小;

2)不考慮其他因素,老王的設(shè)想1和設(shè)想2分別得到的幾何體哪個(gè)容積更大?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著科技的發(fā)展,網(wǎng)絡(luò)已逐漸融入了人們的生活.網(wǎng)購(gòu)是非常方便的購(gòu)物方式,為了了解網(wǎng)購(gòu)在我市的普及情況,某調(diào)查機(jī)構(gòu)進(jìn)行了有關(guān)網(wǎng)購(gòu)的調(diào)查問(wèn)卷,并從參與調(diào)查的市民中隨機(jī)抽取了男女各100人進(jìn)行分析,從而得到表(單位:人)

經(jīng)常網(wǎng)購(gòu)

偶爾或不用網(wǎng)購(gòu)

合計(jì)

男性

50

100

女性

70

100

合計(jì)

(1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為我市市民網(wǎng)購(gòu)與性別有關(guān)?

(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再?gòu)倪@10人中隨機(jī)選取3人贈(zèng)送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購(gòu)的概率;

②將頻率視為概率,從我市所有參與調(diào)查的市民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常網(wǎng)購(gòu)的人數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望和方差.

參考公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知空間中不同直線(xiàn)m、n和不同平面α、β,下面四個(gè)結(jié)論:

①若m、n互為異面直線(xiàn),mα,nα,mβ,nβ,則αβ;

②若mn,mα,nβ,則αβ;

③若nα,mα,則nm;

④若αβ,mα,nm,則nβ

其中正確的是(  )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)).為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為(),將曲線(xiàn)向左平移2個(gè)單位長(zhǎng)度得到曲線(xiàn).

1)求曲線(xiàn)的普通方程和極坐標(biāo)方程;

2)設(shè)直線(xiàn)與曲線(xiàn)交于兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)討論的單調(diào)性;

2)若不等式對(duì)任意恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案