已知Sn是數(shù)列{an}的前n項和,且an=Sn-1+2(n≥2),a1=2.
(1)求數(shù)列{an}的通項公式.
(2)設bn=,Tn=bn+1+bn+2+…+b2n,是否存在最大的正整數(shù)k,使得
對于任意的正整數(shù)n,有Tn>恒成立?若存在,求出k的值;若不存在,說明理由.
(1)2n(2)存在
【解析】(1)由已知an=Sn-1+2,①
得an+1=Sn+2.②
②-①,得an+1-an=Sn-Sn-1(n≥2),
∴an+1=2an(n≥2).
又a1=2,∴a2=a1+2=4=2a1,
∴an+1=2an(n=1,2,3,…),
∴數(shù)列{an}是一個以2為首項,2為公比的等比數(shù)列,
∴an=2·2n-1=2n,n∈N*.
(2)bn===,∴Tn=bn+1+bn+2+…+b2n=++…+,Tn+1=bn+2+bn+3+…+b2(n+1)=++…+++.
∴Tn+1-Tn=+-==.
∵n是正整數(shù),∴Tn+1-Tn>0,即Tn+1>Tn.
∴數(shù)列{Tn}是一個單調遞增數(shù)列.又T1=b2=,∴Tn≥T1=,
要使Tn>恒成立,則>,即k<6.又k是正整數(shù),故存在最大正整數(shù)k=5使Tn>恒成立.
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練2練習卷(解析版) 題型:解答題
某分公司經(jīng)銷某種品牌產品,每件產品的成本為3元,并且每件產品需向總公司交a元(3≤a≤5)的管理費,預計當每件產品的售價為x元(9≤x≤11)時,一年的銷售量為(12-x)2萬件.
(1)求分公司一年的利潤L(萬元)與每件產品的售價x的函數(shù)關系式;
(2)當每件產品的售價為多少元時,分公司一年的利潤L最大?并求出L的最大值Q(a).
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習6-1直線與圓練習卷(解析版) 題型:解答題
已知以點C (t∈R,t≠0)為圓心的圓與x軸交于點O、A,與y軸交于點O、B,其中O為原點.
(1)求證:△AOB的面積為定值;
(2)設直線2x+y-4=0與圓C交于點M、N,若|OM|=|ON|,求圓C的方程;
(3)在(2)的條件下,設P、Q分別是直線l:x+y+2=0和圓C的動點,求|PB|+|PQ|的最小值及此時點P的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習5-2空間向量與立體幾何練習卷(解析版) 題型:選擇題
如圖所示,在空間直角坐標系中,有一棱長為a的正方體ABC-OA′B′C′D′,A′C的中點E與AB的中點F的距離為 ( ).
A.a B. a C.a D.a
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習5-1空間幾何體與點等練習卷(解析版) 題型:選擇題
如圖,在正方形ABCD中,E、F分別是BC、CD的中點,AC∩EF=G.現(xiàn)在沿AE、EF、FA把這個正方形折成一個四面體,使B、C、D三點重合,重合后的點記為P,則在四面體P-AEF中必有( ).
A.AP⊥△PEF所在平面
B.AG⊥△PEF所在平面
C.EP⊥△AEF所在平面
D.PG⊥△AEF所在平面
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習4-2數(shù)列求和與數(shù)列的綜合應用練習卷(解析版) 題型:選擇題
等比數(shù)列{an}的前n項和公式Sn,若2S4=S5+S6,則數(shù)列{an}的公比q的值為 ( ).
A.-2或1 B.-1或 2 C.-2 D.1
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習4-1等差數(shù)列與等比數(shù)列練習卷(解析版) 題型:填空題
設數(shù)列{an}是公差不為零的等差數(shù)列,Sn是數(shù)列{an}的前n項和,且S=9S2,S4=4S2,則數(shù)列{an}的通項公式為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習3-2解三角形練習卷(解析版) 題型:選擇題
在△ABC中,若sin2A+sin2B>sin2C.則△ABC的形狀是( ).
A.銳角三角形 B.直角三角形
C.鈍角三角形 D.不能確定
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復習知能提升演練選修4-5練習卷(解析版) 題型:解答題
已知a≥b>0,求證:2a3-b3≥2ab2-a2b.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com