【題目】在銳角中,角AB,C所對(duì)邊分別為a,bc,已知

(1)求A ;

(2)求的取值范圍.

【答案】(1) ;(2).

【解析】

1)利用余弦定理即可求解.

2)由,以及兩角和與差的公式,則sin2B+sin2C1sin2B),

再由,求出B即可求解.

(1)在銳角△ABC中,∵b3,a2c23c+9,

∴可得c2+b2a2bc,

∴由余弦定理可得:cosA

∴由A為銳角,可得A

(2)∵sin2B+sin2Csin2B+sin2B)=sin2B+cosBsinB21sin2Bcos2B)=1sin2B),

又∵,可得B,

2B∈(),

sin2B)∈(,1],

sin2B+sin2C1sin2B)∈(],

sin2B+sin2C的取值范圍是(,]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) .若曲線在點(diǎn)處的切線方程為為自然對(duì)數(shù)的底數(shù)).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)若函數(shù)上單調(diào)遞增,求的取值范圍;

(2)當(dāng)時(shí),設(shè)函數(shù)的最小值為,求證:

(3)求證:對(duì)任意的正整數(shù),都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.

根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是(  )

A. 月接待游客量逐月增加

B. 年接待游客量逐年增加

C. 各年的月接待游客量高峰期大致在7,8月

D. 各年1月至6月的月接待游客量相對(duì)于7月至12月,波動(dòng)性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn)的雙曲線的右焦點(diǎn)為,右頂點(diǎn)為.

(1)求雙曲線的方程;

(2)若直線與雙曲線恒有兩個(gè)不同的交點(diǎn),且(其中為坐標(biāo)原點(diǎn)),求實(shí)數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,,,,三個(gè)條件中任選一個(gè)補(bǔ)充在下面問題中,并加以解答.

已知的內(nèi)角A,B,C的對(duì)邊分別為a,bc,若,______,求的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐的底面為平行四邊形,且,, 分別為中點(diǎn),過作平面分別與線段相交于點(diǎn).

(Ⅰ)在圖中作出平面使面 (不要求證明);

(II)若,在(Ⅰ)的條件下求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,,,,函數(shù),的最小正周期為

(1)求的單調(diào)增區(qū)間;

(2)方程;在上有且只有一個(gè)解,求實(shí)數(shù)n的取值范圍;

(3)是否存在實(shí)數(shù)m滿足對(duì)任意x1∈[-1,1],都存在x2R,使得++m-)+1>fx2)成立.若存在,求m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)舉行購(gòu)物抽獎(jiǎng)活動(dòng),抽獎(jiǎng)箱中放有編號(hào)分別為的五個(gè)小球.小球除編號(hào)不同外,其余均相同.活動(dòng)規(guī)則如下:從抽獎(jiǎng)箱中隨機(jī)抽取一球,若抽到的小球編號(hào)為,則獲得獎(jiǎng)金元;若抽到的小球編號(hào)為偶數(shù),則獲得獎(jiǎng)金元;若抽到其余編號(hào)的小球,則不中獎(jiǎng).現(xiàn)某顧客依次有放回的抽獎(jiǎng)兩次.

(1)求該顧客兩次抽獎(jiǎng)后都沒有中獎(jiǎng)的概率;

(2)求該顧客兩次抽獎(jiǎng)后獲得獎(jiǎng)金之和為元的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案