已知遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,a3+2是a2與a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)假設(shè)bn=
an
(an+1)(an+1+1)
,其數(shù)列{bn}的前n項和Tn,并解不等式Tn
127
390
(1)∵遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,a3+2是a2與a4的等差中項,
∴2(a3+2)=a2+a4,a3=8,a2+a4=80,
a1q2=8
a1q+a1q3=20
,
解得a1=2,q=2,或a1=32,q=
1
2
(舍),
an=2n
(2)bn=
an
(an+1)(an+1+1)

=
2n
(2n+1)(2n+1+1)

=
1
2n+1
-
1
2n+1+1

∴Tn=
1
2+1
-
1
22+1
+
1
22+1
-
1
23-1
+…+
1
2n-1+1
-
1
2n+1
+
1
2n+1
-
1
2n+1+1

=
1
2+1
-
1
2n+1+1

=
1
3
-
1
2n+1+1
,
∵Tn
127
390
,
1
3
-
1
2n+1+1
127
130
,∴2n+1<129,解得n≤6,
∴不等式Tn
127
390
的解集為{1,2,3,4,5,6}.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)已知等差數(shù)列{an}中,d=
1
3
,n=37,sn=629,求a1及an
(2)求和1+1,
1
2
+3,
1
4
+5
,…,
1
2n-1
+2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)遞增等比數(shù)列{an}的前n項和為Sn,且a2=3,S3=13,數(shù)列{bn}滿足b1=a1,點(diǎn)P(bn,bn+1)在直線x-y+2=0上,n∈N*
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)設(shè)cn=
bn
an
,數(shù)列{cn}的前n項和Tn,若Tn>2a-1恒成立(n∈N*),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列{ an}的前n項和為Sn=n2-5n+2,則數(shù)列{|an|}的前10項和為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列{an},an≠0,a1=
5
6
,若以an-1,an為系數(shù)的二次方程:an-1x2+anx-1=0(n≥2,n∈N*)都有兩個不同的根α,β滿足3α-αβ+3β+1=0
(1)求證:{an-
1
2
}
為等比數(shù)列;
(2)求{an}的通項公式并求前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個等比數(shù)列的前n項之和是2n-b,那么它的前n項的各項平方之和為( 。
A.(2n-1)2B.
1
3
(2n-1)
C.4n-1D.
1
3
(4n-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}為等差數(shù)列,Sn為前n項和,且S3=9,S8=64.
(Ⅰ)求數(shù)列{an}通項公式;
(Ⅱ)令bn=an(
1
2
)n
,Tn=b1+b2+…+bn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知正項等比數(shù)列{an}(n∈N*),首項a1=3,前n項和為Sn,且S3+a3、S5+a5、S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{nSn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是等比數(shù)列,且對任意的n∈N*,都有a1b1+a2b2+a3b3+···+anbn=n·2n+3
(1)若{bn}的首項為4,公比為2,求數(shù)列{an+bn}的前n項和Sn;
(2)若a1=8.
①求數(shù)列{an}與{bn}的通項公式;
②試探究:數(shù)列{bn}中是否存在某一項,它可以表示為該數(shù)列中其它r(r∈N,r≥2)項的和?若存在,請求出該項;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案