在各項都為正數(shù)的等比數(shù)列{an}中,若a5a6=
3
,則log3a1+log3a2+…+log3a10=
5
2
5
2
分析:根據(jù)正數(shù)的等比數(shù)列的性質(zhì)可得 a1a10=a2a9=a3a8=a4a7=a5a6,故要求的式子等于  
log
(a5a6)5
3
 
5
log
3
3
,運算求得結(jié)果.
解答:解:由正數(shù)的等比數(shù)列的性質(zhì)可得 a1a10=a2a9=a3a8=a4a7=a5a6,而a5a6=
3

故log3a1+log3a2+…+log3a10 =
log
(a5a6)5
3
=5
log
3
3
=
5
2
,故答案為
5
2
點評:本題考查等比數(shù)列的定義和性質(zhì),對數(shù)的運算性質(zhì),得到 a1a10=a2a9=a3a8=a4a7=a5a6,是解題的
關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、在各項都為正數(shù)的等比數(shù)列{an}中,首項a1=3,前三項和為21,則a3+a4+a5=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

11、在各項都為正數(shù)的等比數(shù)列{an}中,若a5•a6=9,則log3a1+log3a2+log3a3+…+log3a10等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

3、在各項都為正數(shù)的等比數(shù)列{an}中,a1=3,前三項的和等于21,則a4+a5+a6=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在各項都為正數(shù)的等比數(shù)列{an}中,已知a3=4,前三項的和為28.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足:bn=log2an,b1+b2+…+bn=Sn,求
S1
1
+
S2
2
+…+
Sn
n
取最大時n的值.

查看答案和解析>>

同步練習(xí)冊答案