i是虛數(shù)單位,若集合S={-2,0,1},則( 。
A、i2015∈S
B、-2i2014∈S
C、i2013∈S
D、i(i-
1
i
)∈S
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專(zhuān)題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則即可得出.
解答: 解:A.i2015=(i4503•i3=-i∉S;
B.-2i2014=-2(i4503•i2=2∉S;
C.i2013=(i4502•i=i∉S;
D.i(i-
1
i
)
=-1-1=-2∈S.
故選:D.
點(diǎn)評(píng):本題考查了復(fù)數(shù)的運(yùn)算法則,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
x2+a(a為常數(shù)),直線l與函數(shù)f(x),g(x)的圖象都相切,且l與函數(shù)f(x)圖象的切點(diǎn)的橫坐標(biāo)為1,則a的值為(  )
A、1
B、-
1
2
C、-1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=sinx+2xf′(
π
3
),f′(x)為f (x) 的導(dǎo)函數(shù),令a=-
1
2
,b=log32,則下列關(guān)系正確的是( 。
A、f (a)>f (b)
B、f (a)<f (b)
C、f (a)=f (b)
D、f (|a|)<f (b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果a>b,那么下列不等式中正確的是( 。
A、algx>blgx(x>0)
B、ax2>bx2
C、a2>b2
D、2x•a>2x•b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{2 an}是公比為q的等比數(shù)列,則(  )
A、{an}是公差為q的等差數(shù)列
B、{an}是公差為2q的等差數(shù)列
C、{an}是公差為log2q的等差數(shù)列
D、{an}可能不是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b是實(shí)數(shù),則“a+b>1”是“2a>(
1
2
b”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα+cosα=-
1
5
(0<α<π)
(Ⅰ)求tanα;
(Ⅱ)求sin2α+sinαcosα-2cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z=m2
1
m+8
+i)+(6m-16)i-
m+2
m+8
.(i為虛數(shù)單位)
(1)若復(fù)數(shù)z為純虛數(shù),求實(shí)數(shù)m的值;
(2)若復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)在第三象限或第四象限,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的方程為
x2
4
+
y2
16
=1.
(Ⅰ)求橢圓C的長(zhǎng)軸長(zhǎng)及離心率;
(Ⅱ)已知直線l過(guò)(1,0),與橢圓C交于A,B兩點(diǎn),M為橢圓C的左頂點(diǎn).是否存在直線l使得∠AMB=60°?如果有,求出直線l的方程;如果沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案