【題目】為抗擊新冠疫情,某企業(yè)組織員工進行用款捐物的愛心活動.原則上每人以自愿為基礎,捐款不超過400.現(xiàn)項目負責人統(tǒng)計全體員工數(shù)據(jù)后,下表為隨機抽取的10名員工.的捐款數(shù)額.

員工編號

1

2

3

4

5

6

7

8

9

10

捐款數(shù)額

124

86

215

53

132

195

400

90

300

225

1)若從這10名員工中任意選取3人,記選到的3人中捐款數(shù)額大于200元的人數(shù)為X,求X的分布列和數(shù)學期望:

2)以表中選取的10人作為樣本.估計該企業(yè)全體員工的捐款情況,現(xiàn)從企業(yè)員工中依次抽取8人,若抽到k人的捐款數(shù)額小于200元的可能性最大,求k的值.

【答案】1)分布列見詳解, ;(25

【解析】

1)由題中的隨機分布表可知,10名員工中,捐款數(shù)額大于200元的有4人,的所有可能取值為0,12,3,服從超幾何分布,由此能求出的概率分布列及數(shù)學期望;

2)從8人中抽取的捐款數(shù)額小于200元的人數(shù)為隨機變量,則,假設最大,可列出不等式組,求出的值.

解:(1)由題知,10名員工中,捐款數(shù)額大于200元的有4人,

則隨機變量服從超幾何分布,的所有可能取值為0,12,3

, ,

, ,

的分布列為

X

0

1

2

3

P

;

2)以樣本估計總體的捐款金額小于200的概率,

為從8人中抽取的捐款數(shù)額小于200元的人數(shù),,

,

要使其取得最大值,則需:

,

解得 ,

,故,

即依次抽取8人,若抽到5人的捐款數(shù)額小于200元的可能性最大.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】近年來,共享單車已經(jīng)悄然進入了廣大市民的日常生活,并慢慢改變了人們的出行方式.為了更好地服務民眾,某共享單車公司在其官方中設置了用戶評價反饋系統(tǒng),以了解用戶對車輛狀況和優(yōu)惠活動的評價.現(xiàn)從評價系統(tǒng)中選出條較為詳細的評價信息進行統(tǒng)計,車輛狀況的優(yōu)惠活動評價的列聯(lián)表如下:

對優(yōu)惠活動好評

對優(yōu)惠活動不滿意

合計

對車輛狀況好評

對車輛狀況不滿意

合計

(1)能否在犯錯誤的概率不超過的前提下認為優(yōu)惠活動好評與車輛狀況好評之間有關系?

(2)為了回饋用戶,公司通過向用戶隨機派送每張面額為元,元,元的 三種騎行券.用戶每次使用掃碼用車后,都可獲得一張騎行券.用戶騎行一次獲得元券,獲得元券的概率分別是,,且各次獲取騎行券的結果相互獨立.若某用戶一天使用了兩次該公司的共享單車,記該用戶當天獲得的騎行券面額之和為,求隨機變量的分布列和數(shù)學期望.

參考數(shù)據(jù):

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“搜索指數(shù)”是網(wǎng)民通過搜索引擎,以每天搜索關鍵詞的次數(shù)為基礎所得到的統(tǒng)計指標.“搜索指數(shù)”越大,表示網(wǎng)民對該關鍵詞的搜索次數(shù)越多,對該關鍵詞相關的信息關注度也越高.下圖是2017年9月到2018年2月這半年中,某個關鍵詞的搜索指數(shù)變化的走勢圖.

根據(jù)該走勢圖,下列結論正確的是( )

A. 這半年中,網(wǎng)民對該關鍵詞相關的信息關注度呈周期性變化

B. 這半年中,網(wǎng)民對該關鍵詞相關的信息關注度不斷減弱

C. 從網(wǎng)民對該關鍵詞的搜索指數(shù)來看,去年10月份的方差小于11月份的方差

D. 從網(wǎng)民對該關鍵詞的搜索指數(shù)來看,去年12月份的平均值大于今年1月份的平均值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖在四棱錐中底面為直角梯形,,,側面為正三角形且平面底面,,分別為的中點.

1)證明:平面;

2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過拋物線的焦點的直線交拋物線于兩點,線段的中點的橫坐標為.

1)求拋物線的方程;

2)已知點,過點作直線交拋物線于兩點,求的最大值,并求取得最大值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的長軸長為4,直線被橢圓截得的線段長為.

(1)求橢圓的標準方程;

(2)過橢圓的右頂點作互相垂直的兩條直線分別交橢圓兩點(點不同于橢圓的右頂點),證明:直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國慶節(jié)期間,滕州市實驗小學舉行了一次科普知識競賽活動,設置了一等獎、二等獎、三等獎、四等獎及紀念獎,獲獎人數(shù)的分配情況如圖所示,各個獎品的單價分別為:一等獎50元、二等獎20元、三等獎10元,四等獎5元,紀念獎2元,則以下說法中不正確的是(

A.獲紀念獎的人數(shù)最多B.各個獎項中二等獎的總費用最高

C.購買獎品的費用平均數(shù)為6.65D.購買獎品的費用中位數(shù)為5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,橢圓的上、下頂點分別為,,左、右頂點分別為,,左、右焦點分別為,.原點到直線的距離為.

1)求橢圓的方程;

2是橢圓上異于的任一點,直線,,分別交軸于點,,若直線與過點,的圓相切,切點為,證明:線段的長為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,過拋物線y22pxp0)上一點P1,2),作兩條直線分別交拋物線于Ax1,y1),Bx2,y2),當PAPB的斜率存在且傾斜角互補時:

1)求y1+y2的值;

2)若直線ABy軸上的截距b[1,3]時,求ABP面積SABP的最大值.

查看答案和解析>>

同步練習冊答案