【題目】某程序框圖如圖所示,則該程序運(yùn)行后輸出的S的值為(
A.1
B.
C.
D.

【答案】A
【解析】解:依題意得,運(yùn)行程序后輸出的是數(shù)列{an}的第2013項(xiàng),其中數(shù)列{an}滿(mǎn)足:a1=1,an+1=

注意到a2= ,a3= ,a5=1, ,…該數(shù)列中的項(xiàng)以4為周期重復(fù)性地出現(xiàn),且2013=4×503+1,因此a2013=a1=1,運(yùn)行程序后輸出的S的值為1.

所以答案是:A

【考點(diǎn)精析】本題主要考查了程序框圖的相關(guān)知識(shí)點(diǎn),需要掌握程序框圖又稱(chēng)流程圖,是一種用規(guī)定的圖形、指向線(xiàn)及文字說(shuō)明來(lái)準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線(xiàn);程序框外必要文字說(shuō)明才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程是 (α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為ρ=1.
(Ⅰ)分別寫(xiě)出C1的極坐標(biāo)方程和C2的直角坐標(biāo)方程;
(Ⅱ)若射線(xiàn)l的極坐標(biāo)方程θ= (ρ≥0),且l分別交曲線(xiàn)C1、C2于A、B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,若存在x∈N*使得f(x)≤2成立,則實(shí)數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一張邊長(zhǎng)為12cm的正方形紙片按如圖(1)所示陰影部分裁去四個(gè)全等的等腰三角形,將余下部分沿虛線(xiàn)折疊并拼成一個(gè)有底的正四棱錐模型,如圖(2)所示放置.如果正四棱錐的主視圖是等邊三角形,如圖(3)所示,則正四棱錐的體積是(
A. cm3
B. cm3
C. cm3
D. cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)用支出與銷(xiāo)售額之間有如下的對(duì)應(yīng)數(shù)據(jù)(單位:萬(wàn)元):

(1)求關(guān)于的線(xiàn)性回歸直線(xiàn)方程;

(2)據(jù)此估計(jì)廣告費(fèi)用為10萬(wàn)元時(shí)銷(xiāo)售收入的值.

(附:對(duì)于線(xiàn)性回歸方程,其中

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3﹣ax,g(x)= x2﹣lnx﹣
(1)若f(x)和g(x)在同一點(diǎn)處有相同的極值,求實(shí)數(shù)a的值;
(2)對(duì)于一切x∈(0,+∞),有不等式f(x)≥2xg(x)﹣x2+5x﹣3恒成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)G(x)= x2 ﹣g(x),求證:G(x)>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市對(duì)貧困家庭自主創(chuàng)業(yè)給予小額貸款補(bǔ)貼,每戶(hù)貸款為2萬(wàn)元,貸款期限有6個(gè)月、12個(gè)月、18個(gè)月、24個(gè)月、36個(gè)月五種,這五種貸款期限政府分別需要補(bǔ)助200元、300元、300元、400元,從2016年享受此項(xiàng)政策的困難戶(hù)中抽取了100戶(hù)進(jìn)行了調(diào)查,選取貸款期限的頻數(shù)如表:

貸款期限

6個(gè)月

12個(gè)月

18個(gè)月

24個(gè)月

36個(gè)月

頻數(shù)

20

40

20

10

10

以上表各種貸款期限頻率作為2017年貧困家庭選擇各種貸款期限的概率.
(1)某小區(qū)2017年共有3戶(hù)準(zhǔn)備享受此項(xiàng)政策,計(jì)算其中恰有兩戶(hù)選擇貸款期限為12個(gè)月的概率;
(2)設(shè)給享受此項(xiàng)政策的某困難戶(hù)補(bǔ)貼為ξ元,寫(xiě)出ξ的分布列,若預(yù)計(jì)2017年全市有3.6萬(wàn)戶(hù)享受此項(xiàng)政策,估計(jì)2017年該市共需要補(bǔ)貼多少萬(wàn)元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)C到點(diǎn)F(1,0)的距離比到直線(xiàn)x=﹣2的距離小1,動(dòng)點(diǎn)C的軌跡為E.
(1)求曲線(xiàn)E的方程;
(2)若直線(xiàn)l:y=kx+m(km<0)與曲線(xiàn)E相交于A,B兩個(gè)不同點(diǎn),且 ,證明:直線(xiàn)l經(jīng)過(guò)一個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的首項(xiàng)a1=2,前n項(xiàng)和為Sn , 等比數(shù)列{bn}的首項(xiàng)b1=1,且a2=b3 , S3=6b2 , n∈N*
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)數(shù)列{cn}滿(mǎn)足cn=bn+(﹣1)nan , 記數(shù)列{cn}的前n項(xiàng)和為T(mén)n , 求Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案