已知函數(shù)f(x)=lnx+
a
x
+b,當(dāng)x=1時(shí),f(x)取得極小值3.
(Ⅰ)求a,b的值;
(Ⅱ)求函數(shù)f(x)在[1,2]上的最大值和最小值.
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)先求出函數(shù)的導(dǎo)數(shù),得出
f′(1)=0
f(1)=3
1-a=0
a+b=3
,解出即可;
(Ⅱ)求出函數(shù)的導(dǎo)數(shù),得出當(dāng)x∈[1,2]時(shí)f′(x)≥0,從而求出函數(shù)的單調(diào)區(qū)間,進(jìn)而求出函數(shù)的最值.
解答: 解:(Ⅰ)已知函數(shù)f(x)=lnx+
a
x
+b

f/(x)=
1
x
-
a
x2

因?yàn)楫?dāng)x=1時(shí)函數(shù)f(x)極小值為3,
所以
f′(1)=0
f(1)=3
1-a=0
a+b=3
,
解得
a=1
b=2
,
(Ⅱ)因?yàn)?span id="1rvb8wp" class="MathJye">f(x)=lnx+
1
x
+2;
f/(x)=
1
x
-
1
x2
=
x-1
x2
,
當(dāng)x∈[1,2]時(shí)f′(x)≥0,
所以函數(shù)f(x)在x∈[1,2]上單調(diào)遞增,
所以f(x)min=f(1)=3,
f(x)max=f(2)=ln2+
5
2
點(diǎn)評(píng):本題考查了函數(shù)的單調(diào)性,函數(shù)的最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(x-1)-k(x-1)+1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≤0恒成立,試確定實(shí)數(shù)k的取值范圍;
(3)證明:
lnn
n+1
n-1
2
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)實(shí)數(shù)m為何值時(shí),復(fù)數(shù)z=(m2-2m-3)+(m2-1)i是:
(1)實(shí)數(shù)(2)虛數(shù)(3)純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:y=kx+1,圓C:(x-1)2+(y+1)2=9.
(1)試證明:不論k為何實(shí)數(shù),直線l和圓C總有兩個(gè)交點(diǎn);
(2)當(dāng)k取何值時(shí),直線l被圓C截得的弦長(zhǎng)最短,并求出最短弦的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)兩拋物線y=-x2+2x,y=x2所圍成的圖形為M,求:
(1)M的面積;
(2)將M繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠B=
π
3

(Ⅰ)求sinA+sinC的取值范圍;
(Ⅱ)若∠A為銳角,求f(A)=sinA+cosA+2sinAcosA的最大值并求出此時(shí)角A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量:
a
=(cosα,sinα),
b
=(cosβ,sinβ),且
a
b
滿足關(guān)系|k
a
+
b
|=
3
|
a
-k
b
|(k為正實(shí)數(shù)).
(1)求證:(
a
+
b
)⊥(
a
-
b
);
(2)求證
a
b
的數(shù)量積表示為關(guān)于k的函數(shù)f(k).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx.
(Ⅰ)求函數(shù)y=f(x)的圖象在x=e處的切線方程;
(Ⅱ)設(shè)實(shí)數(shù)a>0,求函數(shù)F(x)=
f(x)
a
在[a,2a]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)球的表面積之比為1:16,則這兩個(gè)球的半徑之比為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案