【題目】已知圓的圓心在直線.

(1)若圓軸的正半軸相切,且該圓截軸所得弦的長為,求圓的標(biāo)準(zhǔn)方程;

(2)在(1)的條件下,直線與圓交于兩點(diǎn),,若以為直徑的圓過坐標(biāo)原點(diǎn),求實(shí)數(shù)的值;

(3)已知點(diǎn),圓的半徑為3,且圓心在第一象限,若圓上存在點(diǎn),使(為坐標(biāo)原點(diǎn)),求圓心的縱坐標(biāo)的取值范圍.

【答案】(1);(2);(3).

【解析】

1)設(shè)出圓心坐標(biāo),根據(jù)圓軸正半軸相切以及該圓截軸所得弦的長,求得圓的圓心和半徑,由此求得圓的方程.

2)聯(lián)立直線的方程和圓的方程,寫出判別式和韋達(dá)定理,結(jié)合圓的幾何性質(zhì)有,化簡此方程求得的值.

3)設(shè),根據(jù)求得的軌跡方程,將問題轉(zhuǎn)化為兩個(gè)圓有公共點(diǎn)的問題來求解出圓心的縱坐標(biāo)的取值范圍.

(1)因?yàn)閳A的圓心在直線上,所以可設(shè)圓心為.

因?yàn)閳A軸的正半軸相切,所以,半徑.

又因?yàn)樵搱A截軸所得弦的長為,

所以,解得.

因此,圓心為,半徑.

所以圓的標(biāo)準(zhǔn)方程為.

(2)由消去,得.

整理得. (★)

,得, (※)

設(shè),,則,,

因?yàn)橐?/span>為直徑的圓過原點(diǎn),可知,的斜率都存在,且,

整理得,即.

化簡得,即.

整理得.解得.

當(dāng)時(shí),,. ③

由③,得,從而,

可見,時(shí)滿足不等式(※).均符合要求.

(3)圓的半徑為3,設(shè)圓的圓心為,

由題意,,則圓的方程為.

又因?yàn)?/span>,,

設(shè)點(diǎn)的坐標(biāo)為,則,

整理得.

它表示以為圓心,2為半徑的圓,記為圓.

由題意可知,點(diǎn)既在圓上又在圓上,即圓和圓有公共點(diǎn).

所以,且.

,且.

所以,即,解得.

所以圓心的縱坐標(biāo)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左,右焦點(diǎn)分別為, ,離心率為, 是橢圓上的動(dòng)點(diǎn),當(dāng)時(shí), 的面積為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若過點(diǎn)的直線交橢圓, 兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若圓和圓關(guān)于直線對(duì)稱,過點(diǎn)的圓軸相切,則圓心的軌跡方程是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)遞增數(shù)列共有項(xiàng),定義集合,將集合中的數(shù)按從小到大排列得到數(shù)列;

1)若數(shù)列共有4項(xiàng),分別為,,,寫出數(shù)列的各項(xiàng)的值;

2)設(shè)是公比為2的等比數(shù)列,且,若數(shù)列的所有項(xiàng)的和為4088,求的值;

3)若,求證:為等差數(shù)列的充要條件是數(shù)列恰有7項(xiàng);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線 的左、右焦點(diǎn)分別為,作傾斜角為的直線與軸和雙曲線的右支分別交于兩點(diǎn),若點(diǎn)平分線段,則該雙曲線的離心率是

A. B. C. 2 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,試討論函數(shù)的單調(diào)性;

(Ⅱ)設(shè),當(dāng)對(duì)任意的恒成立時(shí),求函數(shù)的最大值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),實(shí)數(shù)滿足,若,則實(shí)數(shù)________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若某產(chǎn)品的直徑長與標(biāo)準(zhǔn)值的差的絕對(duì)值不超過1mm 時(shí),則視為合格品,否則視為不合格品。在近期一次產(chǎn)品抽樣檢查中,從某廠生產(chǎn)的此種產(chǎn)品中,隨機(jī)抽取5000件進(jìn)行檢測(cè),結(jié)果發(fā)現(xiàn)有50件不合格品。計(jì)算這50件不合格品的直徑長與標(biāo)準(zhǔn)值的差(單位:mm), 將所得數(shù)據(jù)分組,得到如下頻率分布表:

分組

頻數(shù)

頻率

[-3, -2)

 

0.10

[-2, -1)

8

 

(1,2]

 

0.50

(2,3]

10

 

(3,4]

 

 

合計(jì)

50

1.00

)將上面表格中缺少的數(shù)據(jù)填在答題卡的相應(yīng)位置;

)估計(jì)該廠生產(chǎn)的此種產(chǎn)品中,不合格品的直徑長與標(biāo)準(zhǔn)值的差落在區(qū)間(1,3]內(nèi)的概率;

)現(xiàn)對(duì)該廠這種產(chǎn)品的某個(gè)批次進(jìn)行檢查,結(jié)果發(fā)現(xiàn)有20件不合格品。據(jù)此估算這批產(chǎn)品中的合格品的件數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某濕地公園內(nèi)有一條河,現(xiàn)打算建一座橋?qū)⒑觾砂兜穆愤B接起來,剖面設(shè)計(jì)圖紙如下:

其中,點(diǎn)軸上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),曲線段是橋的主體,為橋頂,且曲線段在圖紙上的圖形對(duì)應(yīng)函數(shù)的解析式為,曲線段均為開口向上的拋物線段,且分別為兩拋物線的頂點(diǎn),設(shè)計(jì)時(shí)要求:保持兩曲線在各銜接處()的切線的斜率相等.

(1)求曲線段在圖紙上對(duì)應(yīng)函數(shù)的解析式,并寫出定義域;

(2)車輛從經(jīng)爬坡,定義車輛上橋過程中某點(diǎn)所需要的爬坡能力為:(該點(diǎn)與橋頂間的水平距離)(設(shè)計(jì)圖紙上該點(diǎn)處的切線的斜率),其中的單位:米.若該景區(qū)可提供三種類型的觀光車:游客踏乘;蓄電池動(dòng)力;內(nèi)燃機(jī)動(dòng)力.它們的爬坡能力分別為米,米,米,又已知圖紙上一個(gè)單位長度表示實(shí)際長度米,試問三種類型的觀光車是否都可以順利過橋?

查看答案和解析>>

同步練習(xí)冊(cè)答案