精英家教網 > 高中數學 > 題目詳情

【題目】等差數列{an}的前n項和為Sn , 數列{bn}是等比數列,滿足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3
(Ⅰ)求數列{an}和{bn}的通項公式;
(Ⅱ)令Cn= 設數列{cn}的前n項和Tn , 求T2n

【答案】解:(Ⅰ)設數列{an}的公差為d,數列{bn}的公比為q, 由b2+S2=10,a5﹣2b2=a3
,解得
∴an=3+2(n﹣1)=2n+1,
(Ⅱ)由a1=3,an=2n+1得Sn=n(n+2),
則n為奇數,cn= = ,
n為偶數,cn=2n1
∴T2n=(c1+c3+…+c2n1)+(c2+c4+…+c2n
=
= =
【解析】(I)利用等差數列與等比數列的通項公式即可得出;(Ⅱ)由a1=3,an=2n+1得Sn=n(n+2).則n為奇數,cn= = .“分組求和”,利用“裂項求和”、等比數列的前n項和公式即可得出.
【考點精析】掌握等差數列的通項公式(及其變式)和等比數列的通項公式(及其變式)是解答本題的根本,需要知道通項公式:;通項公式:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在△ABC中,D、E分別是AB、AC的中點,M是直線DE上的動點.若△ABC的面積為2,則 + 2的最小值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓M軸相切.

(1)的值;

(2)求圓M軸上截得的弦長;

(3)若點是直線上的動點,過點作直線與圓M相切,為切點,求四邊形面積的最小值.

【答案】(1) (2) (3)

【解析】試題分析:(1)先將圓的一般方程化成標準方程,利用直線和圓相切進行求解;(2),得到關于的一元二次方程進行求解;(3)將四邊形的面積的最小值問題轉化為點到直線的的距離進行求解.

試題解析:(1)   ∵圓M軸相切  

   

(2) ,則  

 

(3)

 的最小值等于點到直線的距離, 

 

∴四邊形面積的最小值為

型】解答
束】
20

【題目】在平面直角坐標系中,圓的方程為,且圓軸交于, 兩點,設直線的方程為

(1)當直線與圓相切時,求直線的方程;

(2)已知直線與圓相交于, 兩點.

(。┤,求實數的取值范圍;

(ⅱ)直線與直線相交于點,直線,直線,直線的斜率分別為, ,

是否存在常數,使得恒成立?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,且時,總有成立.

a的值;

判斷并證明函數的單調性;

上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,
(I)求 的單調區(qū)間;
(II)若對任意的 ,都有 ,求實數 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用 (基準保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費是與上一年度車輛發(fā)生道路交通安全違法行為或者道路交通事故的情況相聯(lián)系的.交強險第二年價格計算公式具體如下:交強險最終保費基準保費浮動比率).發(fā)生交通事故的次數越多,出險次數的就越多,費率也就越髙,具體浮動情況如下表:

某機構為了研究某一品牌普通6座以下私家車的投保情況,為此搜集并整理了100輛這一品牌普通6座以下私家車一年內的出險次數,得到下面的柱狀圖:

已知小明家里有一輛該品牌普通6座以下私家車且需要續(xù)保,續(xù)保費用為.

1為事件,的估計值;

2的平均估計值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 經過點 ,其離心率 .
(Ⅰ)求橢圓 的方程;
(Ⅱ)設動直線 與橢圓 相切,切點為 ,且 與直線 相交于點
試問:在 軸上是否存在一定點,使得以 為直徑的圓恒過該定點?若存在,
求出該點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的左、右焦點分別為 、 ,短軸兩個端點為 、 ,且四邊形 是邊長為2的正方形.

(1)求橢圓的方程;
(2)若 、 分別是橢圓長軸的左、右端點,動點 滿足 ,連接 ,交橢圓于點 .證明: 為定值.
(3)在(2)的條件下,試問 軸上是否存異于點 的定點 ,使得以 為直徑的圓恒過直線 、 的交點,若存在,求出點 的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx,g(x)= +bx(a≠0)
(Ⅰ)若a=﹣2時,函數h(x)=f(x)﹣g(x)在其定義域內是增函數,求b的取值范圍;
(Ⅱ)在(Ⅰ)的結論下,設φ(x)=e2x+bex , x∈[0,ln2],求函數φ(x)的最小值;
(Ⅲ)設函數f(x)的圖象C1與函數g(x)的圖象C2交于點P、Q,過線段PQ的中點R作x軸的垂線分別交C1、C2于點M、N,問是否存在點R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案