已知復(fù)數(shù)z滿足條件:(1+2i)z=1,則z對(duì)應(yīng)的點(diǎn)位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則和幾何意義即可得出.
解答: 解:∵(1+2i)z=1,∴(1-2i)(1+2i)z=1-2i,∴5z=1-2i,∴z=
1
5
-
2
5
i

∴復(fù)數(shù)z對(duì)應(yīng)點(diǎn)坐標(biāo)為(
1
5
,-
2
5
)
位于第四象限.
故選:D.
點(diǎn)評(píng):本題考查了復(fù)數(shù)的運(yùn)算法則和幾何意義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(cos
x
2
,-1),
n
=(
3
sin
x
2
,cos2
x
2
),設(shè)函數(shù)f(x)=
m
n
+
1
2

(1)若x∈[0,
π
2
],f(x)=
3
3
,求cosx的值;
(2)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且滿足2bcosA≤2c-
3
a,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,
AB
BC
=2
BC
CA
=3
CA
AB
,則tanA:tanB:tanC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)有一塊邊長(zhǎng)為2的正方形鐵皮,其中E為AB的中點(diǎn),將△ADE與△BEC分別沿ED,EC向上折起,使A、B重合于點(diǎn)P,做成一個(gè)垃圾鏟,則它的體積為(  )
A、
3
3
B、
3
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)滿足f(x+6)=f(x),當(dāng)-1≤x<3時(shí),f(x)=x,當(dāng)-3≤x<-1時(shí),f(x)=-(x+2)2,.則f(1)+f(2)+f(3)+…f(2012)=( 。
A、335B、338
C、1678D、2012

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列所給的四個(gè)圖象中,可以作為函數(shù)y=f(x)的圖象的有( 。
A、(1)(2)(3)
B、(1)(2)(4)
C、(1)(3)(4)
D、(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)已知直線l的一個(gè)方向向量的坐標(biāo)為
I
=(1,-1,2)且過(guò)點(diǎn)M(3,1,4),那么以下各點(diǎn)中在直線l上的是(  )
A、(3,-1,2)
B、(6,-1,8)
C、(3,-1,8)
D、(5,-1,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中是奇函數(shù)且在(0,1)上遞增的函數(shù)是( 。
A、f(x)=x+
1
x
B、f(x)=x2-
1
x
C、f(x)=
1-x2
D、f(x)=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=log2(1-3x)的值域?yàn)椋ā 。?/div>
A、(0,+∞)
B、[0,+∞)
C、(-∞,0)
D、[-∞,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案