【題目】已知函數(shù)f(x)=9x﹣2a3x+3:
(1)若a=1,x∈[0,1]時,求f(x)的值域;
(2)當(dāng)x∈[﹣1,1]時,求f(x)的最小值h(a);
(3)是否存在實數(shù)m、n,同時滿足下列條件:①n>m>3;②當(dāng)h(a)的定義域為[m,n]時,其值域為[m2 , n2],若存在,求出m、n的值,若不存在,請說明理由.

【答案】
(1)解:∵函數(shù)f(x)=9x﹣2a3x+3,

設(shè)t=3x,t∈[1,3],

則φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,對稱軸為t=a.

當(dāng)a=1時,φ(t)=(t﹣1)2+2在[1,3]遞增,

∴φ(t)∈[φ(1),φ(3)],

∴函數(shù)f(x)的值域是:[2,6]


(2)解:∵函數(shù)φ(t)的對稱軸為t=a,

當(dāng)x∈[﹣1,1]時,t∈[ ,3],

當(dāng)a< 時,ymin=h(a)=φ( )=

當(dāng) ≤a≤3時,ymin=h(a)=φ(a)=3﹣a2

當(dāng)a>3時,ymin=h(a)=φ(3)=12﹣6a.

故h(a)=


(3)解:假設(shè)滿足題意的m,n存在,∵n>m>3,∴h(a)=12﹣6a,

∴函數(shù)h(a)在(3,+∞)上是減函數(shù).

又∵h(a)的定義域為[m,n],值域為[m2,n2],

,

兩式相減得6(n﹣m)=(n﹣m)(m+n),

又∵n>m>3,∴m﹣n≠0,∴m+n=6,與n>m>3矛盾.

∴滿足題意的m,n不存在


【解析】(1)設(shè)t=3x , 則φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2 , φ(t)的對稱軸為t=a,當(dāng)a=1時,即可求出f(x)的值域;(2)由函數(shù)φ(t)的對稱軸為t=a,分類討論當(dāng)a< 時,當(dāng) ≤a≤3時,當(dāng)a>3時,求出最小值,則h(a)的表達式可求;(3)假設(shè)滿足題意的m,n存在,函數(shù)h(a)在(3,+∞)上是減函數(shù),求出h(a)的定義域,值域,然后列出不等式組,求解與已知矛盾,即可得到結(jié)論.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的值域的相關(guān)知識,掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實質(zhì)是相同的,以及對函數(shù)的最值及其幾何意義的理解,了解利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲担

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sin2x﹣2cos2x﹣1,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期和最小值;
(Ⅱ)在△ABC中,A,B,C的對邊分別為a,b,c,已知c= ,f(C)=0,sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)上有最大值,求實數(shù)的值;

(2)若方程上有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集為[﹣3,3].
(Ⅰ)解不等式:f(x)+f(x+2)>0;
(Ⅱ)若a,b,c均為正實數(shù),且滿足a+b+c=m,求證: ≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有以下命題:
①若函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),則f(x)的值域為{0};
②若函數(shù)f(x)是偶函數(shù),則f(|x|)=f(x);
③若函數(shù)f(x)在其定義域內(nèi)不是單調(diào)函數(shù),則f(x)不存在反函數(shù);
④若函數(shù)f(x)存在反函數(shù)f1(x),且f1(x)與f(x)不完全相同,則f(x)與f1(x)圖象的公共點必在直線y=x上;
其中真命題的序號是 . (寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地要建造一個邊長為2(單位:km)的正方形市民休閑公園OABC,將其中的區(qū)域ODC開挖成一個池塘,如圖建立平面直角坐標(biāo)系后,點D的坐標(biāo)為(1,2),曲線OD是函數(shù)y=ax2圖象的一部分,對邊OA上一點M在區(qū)域OABD內(nèi)作一次函數(shù)y=kx+b(k>0)的圖象,與線段DB交于點N(點N不與點D重合),且線段MN與曲線OD有且只有一個公共點P,四邊形MABN為綠化風(fēng)景區(qū):
(1)求證:b=﹣ ;
(2)設(shè)點P的橫坐標(biāo)為t,①用t表示M、N兩點坐標(biāo);②將四邊形MABN的面積S表示成關(guān)于t的函數(shù)S=S(t),并求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AB∥DC,AD=AB=BC=1, ,平面ACFE⊥平面ABCD,四邊形ACFE是矩形,AE=1,點M在線段EF上.
(1)當(dāng) 為何值時,AM∥平面BDF?證明你的結(jié)論;
(2)求二面角B﹣EF﹣D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了得到函數(shù)y=4sinxcosx,x∈R的圖象,只要把函數(shù)y=sin2x﹣ cos2x,x∈R圖象上所有的點(
A.向左平移 個單位長度
B.向右平移 個單位長度
C.向左平移 個單位長度
D.向右平移 個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,g(x)=b(x+1),其中a≠0,b≠0
(1)若a=b,討論F(x)=f(x)﹣g(x)的單調(diào)區(qū)間;
(2)已知函數(shù)f(x)的曲線與函數(shù)g(x)的曲線有兩個交點,設(shè)兩個交點的橫坐標(biāo)分別為x1 , x2 , 證明:

查看答案和解析>>

同步練習(xí)冊答案