15.某廠2006年的產(chǎn)值為a萬元,預計產(chǎn)值每年以n%遞增,則該廠到2018年的產(chǎn)值(單位:萬元)是( 。
A.a(1+n%)13B.a(1+n%)12C.a(1+n%)11D.$\frac{10}{9}a{(1-n%)^{12}}$

分析 由題意可知,每一年的產(chǎn)值構(gòu)成以a為首項,以1+n%為公比的等比數(shù)列,代入等比數(shù)列的通項公式得答案.

解答 解:∵2006年的產(chǎn)值為a萬元,預計產(chǎn)值每年以n%遞增,
則每一年的產(chǎn)值構(gòu)成以a為首項,以1+n%為公比的等比數(shù)列,
∴${a}_{2018}={a}_{2006}•(1+n%)^{12}$=a•(1+n%)12
故選:B.

點評 本題考查等比數(shù)列的通項公式,是基礎(chǔ)的計算題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,PO⊥平面ABCD,點O在AB上,EA∥PO,四邊形ABCD為直角梯形,BC⊥AB,BC=CD=BO=PO,EA=AO=$\frac{1}{2}$CD=1
(1)求證:BC⊥平面ABP;
(2)直線PE上是否存在點M,使DM∥平面PBC,若存在,求出點M;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知傾斜角為α的直線l與直線x-2y+2=0平行,則cosα的值為( 。
A.-$\frac{\sqrt{5}}{5}$B.-$\frac{2\sqrt{5}}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.當0<x≤$\frac{1}{2}$時,4sin$\frac{π}{3}$x-logax<0恒成立,則a的取值范圍是(  )
A.(0,$\frac{\sqrt{2}}{2}$)B.($\frac{\sqrt{2}}{2}$,1)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)y=ax(a>0且a≠1)在區(qū)間[1,2]上的最大值與最小值的差為6,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.根據(jù)下列條件分別求直線方程:
(1)已知直線過點P(2,2)且在兩坐標軸的截距相等;
(2)過兩直線3x-2y+1=0和x+3y+4=0的交點,且垂直于直線x+3y+4=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知a=9${\;}^{lo{g}_{2}4.1}$,b=9${\;}^{lo{g}_{2}2.7}$,c=($\frac{1}{3}$)${\;}^{lo{g}_{2}0.1}$,則( 。
A.a>b>cB.a>c>bC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知a=2,b=1,焦點在x軸上的橢圓方程是(  )
A.$\frac{{x}^{2}}{4}$+y2=1B.x2+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{2}$+y2=1D.x2+$\frac{{y}^{2}}{2}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知一個三棱錐的三視圖如圖所示,其中俯視圖是等腰直角三角形,正視圖和側(cè)視圖是全等的等腰三角形則此三棱錐的體積為:$\frac{4}{3}$cm3,此三棱錐的外接球表面積為:9πcm2

查看答案和解析>>

同步練習冊答案