已知點A(cosα,sinα),點B(cos(α+),sin(α+)),點C(1,0).
(Ⅰ)若|CA|=,求α的值;
(Ⅱ)若α∈(),求的取值范圍.
【答案】分析:(Ⅰ)由|CA|=,可得 (cosα-1)2+sin2α=3,化簡可得cosα=-,由此求得 α 的值.
(Ⅱ)利用兩個向量的數(shù)量積公式以及三角恒等變換化簡 的解析式為 +sin(α-),由α∈(),可得 α-∈[-,],再根據(jù)正弦函數(shù)的定義域和值域求得的取值范圍.
解答:解:(Ⅰ)若|CA|=,則有 (cosα-1)2+sin2α=3,化簡可得cosα=-,∴α=2kπ+,或α=2kπ+,k∈z.
(Ⅱ)∵=(cosα-1,sinα)•(cos(α+)-1,sin(α+))=(cosα-1)[cos(α+)-1]+sinα•sin(α+
=(cosα-1)(cosα-sinα-1)+sinα(sinα+cosα)=cos2α-sinαcosα-cosα-++1+sin2α+
=-cosα+=+sinα-cosα)=+sin(α-),
而由α∈(),可得 α-∈[-,],∴-≤sin(α-)≤,∴-sin(α-)≤
故 ,即的取值范圍是[].
點評:本題主要考查兩角和差的正弦公式,兩個向量的數(shù)量積公式的應(yīng)用,正弦函數(shù)的定義域和值域,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知點A(cosθ,sinθ) (0≤θ≤π)在曲線
3
xy-y2=
1
2
,則θ的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(cosα,sinα),點B(cos(α+
π
3
),sin(α+
π
3
)),點C(1,0).
(Ⅰ)若|CA|=
3
,求α的值;
(Ⅱ)若α∈(
π
6
,
π
2
),求
CA
CB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(λcosα,λsinα)(λ≠0),B(
1
2
,-
3
2
)
,O為坐標原點,
(1)若α=
π
6
時,不等式|
AB
|≥2|
OB
|
有解,求實數(shù)λ的取值范圍;
(2)若|
AB
|≥2|
OB
|
對任意實數(shù)α恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:閔行區(qū)二模 題型:解答題

已知點A(λcosα,λsinα)(λ≠0),B(
1
2
,-
3
2
)
,O為坐標原點,
(1)若α=
π
6
時,不等式|
AB
|≥2|
OB
|
有解,求實數(shù)λ的取值范圍;
(2)若|
AB
|≥2|
OB
|
對任意實數(shù)α恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習冊答案