分析 通過(guò)Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$)及an=Sn-Sn-1寫(xiě)出前幾項(xiàng)的值猜想:an=$\sqrt{n}$-$\sqrt{n-1}$并用數(shù)學(xué)歸納法證明即可.再求解Sn.
解答 解:依題意,a1=$\frac{1}{2}$(a1+$\frac{1}{{a}_{1}}$),
解得:a1=1或a1=-1(舍);
a2=S2-a1
=$\frac{1}{2}$(a2+$\frac{1}{{a}_{2}}$)-a1
=$\frac{1}{2}$(a2+$\frac{1}{{a}_{2}}$)-1,
解得:a2=$\sqrt{2}$-1或a2=-$\sqrt{2}$-1(舍);
a3=S3-a1-a2
=$\frac{1}{2}$(a3+$\frac{1}{{a}_{3}}$)-a1-a2
=$\frac{1}{2}$(a3+$\frac{1}{{a}_{3}}$)-1-($\sqrt{2}$-1),
解得:a3=$\sqrt{3}$-$\sqrt{2}$或a3=-$\sqrt{3}$-$\sqrt{2}$(舍);
猜想:an=$\sqrt{n}$-$\sqrt{n-1}$.
下面用數(shù)學(xué)歸納法來(lái)證明:
①當(dāng)n=1時(shí),顯然成立;
②假設(shè)當(dāng)n=k(k≥2)時(shí),有ak=$\sqrt{k}$-$\sqrt{k-1}$,
∴Sk=a1+a2+…+ak
=1+($\sqrt{2}$-1)+…+($\sqrt{k}$-$\sqrt{k-1}$)
=$\sqrt{k}$,
∴ak+1=Sk+1-Sk
=$\frac{1}{2}$(ak+1+$\frac{1}{{a}_{k+1}}$)-$\sqrt{k}$,
整理得:ak+12+2$\sqrt{k}$•ak+1-1=0,
解得:ak+1=$\sqrt{k+1}$-$\sqrt{k}$或ak+1=-$\sqrt{k+1}$-$\sqrt{k}$(舍),
即當(dāng)n=k+1時(shí),ak+1=$\sqrt{k+1}$-$\sqrt{k}$;
由①、②可知,an=$\sqrt{n}$-$\sqrt{n-1}$.
Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$)=$\frac{1}{2}$($\sqrt{n}-\sqrt{n-1}$+$\frac{1}{\sqrt{n}-\sqrt{n-1}}$)=$\sqrt{n}$.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng),考查數(shù)學(xué)歸納法,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,1) | C. | [1,2] | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com