根據(jù)世行2013年新標(biāo)準(zhǔn),人均GDP低于1035美元為低收入國家;人均GDP為1035-4085美元為中等偏下收入國家;人均GDP為4085-12616美元為中等偏上收入國家;人均GDP不低于12616美元為高收入國家.某城市有5個行政區(qū),各區(qū)人口占該城市人口比例及人均GDP如下表:
行政區(qū)區(qū)人口占城市人口比例區(qū)人均GDP(單位:美元)
A25%8000
B30%4000
C15%6000
D10%3000
E20%10000
(Ⅰ)判斷該城市人均GDP是否達(dá)到中等偏上收入國家標(biāo)準(zhǔn);
(Ⅱ)現(xiàn)從該城市5個行政區(qū)中隨機抽取2個,求抽到的2個行政區(qū)人均GDP都達(dá)到中等偏上收入國家標(biāo)準(zhǔn)的概率.
考點:古典概型及其概率計算公式,列舉法計算基本事件數(shù)及事件發(fā)生的概率,概率的應(yīng)用
專題:應(yīng)用題,概率與統(tǒng)計
分析:(Ⅰ)利用所給數(shù)據(jù),計算該城市人均GDP,即可得出結(jié)論;
(Ⅱ)利用古典概型概率公式,即可得出結(jié)論.
解答: 解:(Ⅰ)設(shè)該城市人口總數(shù)為a,則該城市人均GDP為
8000×0.25a+4000×0.30a+6000×0.15a+3000×0.10a+10000×0.20a
a
=6400
∴該城市人均GDP達(dá)到中等偏上收入國家標(biāo)準(zhǔn);
(Ⅱ)從該城市5個行政區(qū)中隨機抽取2個,共有
C
2
5
=10種情況,GDP都達(dá)到中等偏上收入國家標(biāo)準(zhǔn)的區(qū)域有A,C,E,抽到的2個行政區(qū)人均GDP都達(dá)到中等偏上收入國家標(biāo)準(zhǔn),共有
C
2
3
=3種情況,
∴抽到的2個行政區(qū)人均GDP都達(dá)到中等偏上收入國家標(biāo)準(zhǔn)的概率
3
10
點評:本題考查概率與統(tǒng)計等基礎(chǔ)知識,考查數(shù)據(jù)處理能力、運算求解能力、應(yīng)用意識,考查必然、或然思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以邊長為1的正方形的一邊所在所在直線為旋轉(zhuǎn)軸,將該正方形旋轉(zhuǎn)一周所得圓柱的側(cè)面積等于( 。
A、2πB、πC、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是C:
x2
a2
+
y2
b2
=1(a>b>0)的左,右焦點,M是C上一點且MF2與x軸垂直,直線MF1與C的另一個交點為N.
(1)若直線MN的斜率為
3
4
,求C的離心率;
(2)若直線MN在y軸上的截距為2,且|MN|=5|F1N|,求a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某大學(xué)餐飲中心為了解新生的飲食習(xí)慣,在全校一年級學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:
喜歡甜品不喜歡甜品合計
南方學(xué)生602080
北方學(xué)生101020
合計7030100
(Ⅰ)根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
(Ⅱ)已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機抽取3人,求至多有1人喜歡甜品的概率.
附:X2=
n(n11n22-n12n21)2
n1+n2+n+1n+2
   
P(x2>k)0.1000.0500.010
k2.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四邊形ABCD的內(nèi)角A與C互補,AB=1,BC=3,CD=DA=2.
(1)求C和BD;
(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計劃在某水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水庫年入流量X(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,假設(shè)各年的年入流量相互獨立.
(Ⅰ)求未來4年中,至多有1年的年入流量超過120的概率;
(Ⅱ)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量X限制,并有如下關(guān)系:
年入流量X40<X<8080≤X≤120X>120
發(fā)電機最多可運行臺數(shù)123
若某臺發(fā)電機運行,則該臺年利潤為5000萬元,若某臺發(fā)電機未運行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達(dá)到最大,應(yīng)安裝發(fā)電機多少臺?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點為F1,F(xiàn)2,過F2作x軸的垂線與C相交于A,B兩點,F(xiàn)1B與y軸相交于點D,若AD⊥F1B,則橢圓C的離心率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方形的四個頂點A(-1,-1),B(1,-1),C(1,1),D(-1,1)分別在拋物線y=-x2和y=x2上,如圖所示,若將一個質(zhì)點隨機投入正方形ABCD中,則質(zhì)點落在圖中陰影區(qū)域的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)(3+2i)i等于(  )
A、-2-3iB、-2+3i
C、2-3iD、2+3i

查看答案和解析>>

同步練習(xí)冊答案