【題目】定義在正實(shí)數(shù)上的函數(shù),其中表示不小于x的最小整數(shù),如,當(dāng)時,函數(shù)的值域?yàn)?/span>,記集合中元素的個數(shù)為,則=____.

【答案】

【解析】

首先求解n=1,2,3,4,5的值,然后利用遞推關(guān)系可得的值.

易知:當(dāng)n=1時,因?yàn)?/span>x∈(0,1],所以{x}=1,所以{x{x}}=1,所以.

當(dāng)n=2時,因?yàn)?/span>x∈(1,2],所以{x}=2,所以{x{x}}∈(2,4]

所以.

當(dāng)n=3時,因?yàn)?/span>x∈(23],所以{x}=3,所以{x{x}}={3x}∈(69]

;

當(dāng)n=4時,因?yàn)?/span>x∈(3,4],所以{x}=4,所以{x{x}}={4x}∈(12,16],

所以;

當(dāng)n=5時,因?yàn)?/span>x∈(4,5],所以{x}=5,所以{x{x}}={5x}∈(20,25],

所以.

由此類推:.

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.

(1)證明:BD⊥PC;

(2)若AD=4,BC=2,設(shè)AC∩BD=O,且∠PDO=60°,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)已知雙曲線與橢圓有相同焦點(diǎn),且過點(diǎn),求雙曲線標(biāo)準(zhǔn)方程;

2)已知橢圓的一個焦點(diǎn)為,橢圓上一點(diǎn)到焦點(diǎn)的最大距離是3,求這個橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形ABCDBDEF均為菱形,,且

求證:平面BDEF;

求直線AD與平面ABF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的對稱軸為坐標(biāo)軸,頂點(diǎn)是坐標(biāo)原點(diǎn),準(zhǔn)線方程為,直線與拋物線相交于不同的, 兩點(diǎn).

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)如果直線過拋物線的焦點(diǎn),求的值;

(3)如果,直線是否過一定點(diǎn),若過一定點(diǎn),求出該定點(diǎn);若不過一定點(diǎn),試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)為常數(shù))的圖象與x軸有唯一公共點(diǎn)M

1)求函數(shù)的單調(diào)區(qū)間.

2)若,存在不相等的實(shí)數(shù),滿足,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱柱,中,

1)求異面直線所成角的大小;

2)若是線段上(不含線段的兩端點(diǎn))的一個動點(diǎn),請?zhí)岢鲆粋與三棱錐體積有關(guān)的數(shù)學(xué)問題(注:三棱錐需以點(diǎn)和已知正四棱柱八個頂點(diǎn)中的三個為頂點(diǎn)構(gòu)成);并解答所提出的問題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有5個大小相同的球,其中有2個白球,2個黑球,1個紅球,現(xiàn)從袋中每次取出1球,去除后不放回,直到取到有兩種不同顏色的球時即終止,用表示終止取球時所需的取球次數(shù),則隨機(jī)變量的數(shù)字期望是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《九章算術(shù)·商功》中闡述:“斜解立方,得兩壍堵。斜解壍堵,其一為陽馬,一為鱉臑.陽馬居二,鱉臑居一,不易之率也.合兩鱉臑三而一,驗(yàn)之以棊,其形露矣.”若稱為“陽馬”的某幾何體的三視圖如圖所示,圖中網(wǎng)格紙上小正方形的邊長為1,則對該幾何體描述:

①四個側(cè)面都是直角三角形;

②最長的側(cè)棱長為;

③四個側(cè)面中有三個側(cè)面是全等的直角三角形;

④外接球的表面積為.

其中正確的個數(shù)為( )

A. 0B. 1

C. 2D. 3

查看答案和解析>>

同步練習(xí)冊答案