18.已知$\overrightarrow a=(2,1,-3),\overrightarrow b=(4,2,λ)$,若$\overrightarrow a$⊥$\overrightarrow b$,則實(shí)數(shù) λ等于(  )
A.-2B.$\frac{10}{3}$C.2D.$-\frac{10}{3}$

分析 利用向量垂直的性質(zhì)直接求解.

解答 解:∵$\overrightarrow a=(2,1,-3),\overrightarrow b=(4,2,λ)$,
$\overrightarrow a$⊥$\overrightarrow b$,
∴$\overrightarrow{a}•\overrightarrow$=8+2-3λ=0,
解得$λ=\frac{10}{3}$.
故選:B.

點(diǎn)評 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量垂直的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在矩形ABCD中,AB=2,BC=1,那么$\overrightarrow{AC}•\overrightarrow{AB}$=4;若E為線段AC上的動(dòng)點(diǎn),則$\overrightarrow{AC}•\overrightarrow{BE}$的取值范圍是[-4,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=sinx-3mx,g(x)=mxcosx-mx.
(1)討論f(x)在區(qū)間[0,π]上的單調(diào)性;
(2)若對任意x≥0,都有f(x)≤g(x),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在四棱錐E-ABCD中,平面EAB⊥平面ABCD,四邊形ABCD為矩形,EA⊥EB,點(diǎn)M,N分別是AE,CD的中點(diǎn).
求證:(1)直線MN∥平面EBC;
(2)直線EA⊥平面EBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.甲、乙、丙分別從A,B,C,D四道題中獨(dú)立地選做兩道題,其中甲必選B題.
(1)求甲選做D題,且乙、丙都不選做D題的概率;
(2)設(shè)隨機(jī)變量X表示D題被甲、乙、丙選做的次數(shù),求X的概率分布和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓心為C的圓過點(diǎn)A(-2,2),B(-5,5),且圓心在直線l:x+y+3=0上
(Ⅰ)求圓心為C的圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)M(-2,9)作圓的切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=sin(2ωx-$\frac{π}{6}$)+2cos2ωx-1(ω>0)的最小正周期為π
(Ⅰ)求ω的值;
(Ⅱ)求f(x)在區(qū)間[0,$\frac{7π}{12}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在平面直角坐標(biāo)系xOy中,橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2$\sqrt{3}$,且過點(diǎn)(1,$\frac{\sqrt{3}}{2}$),橢圓上頂點(diǎn)為A,過點(diǎn)A作圓(x-1)2+y2=r2(0<r<1)的兩條切線分別與橢圓E相交于點(diǎn)B,C(不同于點(diǎn)A),設(shè)直線AB,AC的斜率分別為kAB,KAC
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求kAB•kAC的值;
(3)試問直線BC是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知向量$\overrightarrow a=({1,\sqrt{3}}),\overrightarrow b=({3,m})$,若向量$\overrightarrow{a}$與$\overrightarrow$共線,則實(shí)數(shù)m=3$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案