【題目】如圖,邊長(zhǎng)為的正方形和高為的等腰梯形所在的平面互相垂直,,,與交于點(diǎn),點(diǎn)為線(xiàn)段上任意一點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求與平面所成角的正弦值;
(Ⅲ)是否存在點(diǎn)使平面與平面垂直,若存在,求出的值,若不存在,說(shuō)明理由.
【答案】(Ⅰ)詳見(jiàn)解析(Ⅱ)(Ⅲ)存在,且此時(shí)的值為
【解析】
(Ⅰ)證明EF∥BD,OF∥ED.推出OF∥平面ADE;
(Ⅱ)取EF中點(diǎn)M,連結(jié)MO,得到MO⊥BD.證明MO⊥平面ABCD,建立空間直角坐標(biāo)系O﹣xyz,求出平面ADE的法向量利用空間向量的數(shù)量積求解直線(xiàn)BF與平面ADE所成角;
(Ⅲ)設(shè),求出平面BCH的法向量,通過(guò)平面BCH與平面ADE垂直,則,轉(zhuǎn)化求解即可.
證明:(Ⅰ)因?yàn)檎叫?/span>中,與交于點(diǎn),
所以.
因?yàn)?/span>,
所以 且
所以為平行四邊形.
所以 .
又因?yàn)?/span>平面,平面,
所以平面.
解:(Ⅱ)取中點(diǎn),連結(jié),因?yàn)樘菪?/span>為等腰梯形,所以.
又因?yàn)槠矫?/span>平面,
平面,
平面平面,
所以平面.
又因?yàn)?/span>,
所以兩兩垂直.
如圖,建立空間直角坐標(biāo)系,
則
,
,,,
設(shè)平面的法向量為,
則,即,
令,則,所以.
設(shè)直線(xiàn)與平面所成角為,
,
所以直線(xiàn)與平面所成角的正弦值為.
(Ⅲ)設(shè),
則,,
設(shè)平面的法向量為,
則,即,
令,則,.
所以.
若平面與平面垂直,則.
由,得.
所以線(xiàn)段OF上存在點(diǎn)使平面與平面垂直,
的值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位為了響應(yīng)疫情期間有序復(fù)工復(fù)產(chǎn)的號(hào)召,組織從疫區(qū)回來(lái)的甲、乙、丙、丁4名員工進(jìn)行核酸檢測(cè),現(xiàn)采用抽簽法決定檢測(cè)順序,在“員工甲不是第一個(gè)檢測(cè),員工乙不是最后一個(gè)檢測(cè)”的條件下,員工丙第一個(gè)檢測(cè)的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列選項(xiàng)中,說(shuō)法正確的是( )
A.命題“,”的否定為“,”;
B.命題“在中,,則”的逆否命題為真命題;
C.已知、m是兩條不同的直線(xiàn),是個(gè)平面,若,則;
D.已知定義在R上的函數(shù),則“為奇函數(shù)”是“”的充分必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接年北京冬季奧運(yùn)會(huì),普及冬奧知識(shí),某校開(kāi)展了“冰雪答題王”冬奧知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取了名學(xué)生,將他們的比賽成績(jī)(滿(mǎn)分為分)分為組:,,,,,,得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)記表示事件“從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取一名學(xué)生,該學(xué)生的比賽成績(jī)不低于分”,估計(jì)的概率;
(3)在抽取的名學(xué)生中,規(guī)定:比賽成績(jī)不低于分為“優(yōu)秀”,比賽成績(jī)低于分為“非優(yōu)秀”.請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“比賽成績(jī)是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
參考公式及數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在極坐標(biāo)系中,,,,,,弧,所在圓的圓心分別是,,曲線(xiàn)是弧,曲線(xiàn)是線(xiàn)段,曲線(xiàn)是線(xiàn)段,曲線(xiàn)是弧.
(1)分別寫(xiě)出,,,的極坐標(biāo)方程;
(2)曲線(xiàn)由,,,構(gòu)成,若點(diǎn),(),在上,則當(dāng)時(shí),求點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列滿(mǎn)足.
(1)求的通項(xiàng)公式;
(2)設(shè)等比數(shù)列滿(mǎn)足,問(wèn): 與數(shù)列的第幾項(xiàng)相等?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題,其中正確的命題有( )
A.設(shè)具有相關(guān)關(guān)系的兩個(gè)變量x,y的相關(guān)系數(shù)為r,則越接近于0,x,y之間的線(xiàn)性相關(guān)程度越高
B.隨機(jī)變量,若,則
C.公共汽車(chē)上有10位乘客,沿途5個(gè)車(chē)站,乘客下車(chē)的可能方式有種
D.回歸方程為中,變量y與x具有正的線(xiàn)性相關(guān)關(guān)系,變量x增加1個(gè)單位時(shí),y平均增加0.85個(gè)單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲、乙兩名工人在同樣條件下每天各生產(chǎn)100件產(chǎn)品,且每生產(chǎn)1件正品可獲利20元,生產(chǎn)1件次品損失30元,甲、乙兩名工人100天中出現(xiàn)次品件數(shù)的情況如表所示.
甲每天生產(chǎn)的次品數(shù)/件 | 0 | 1 | 2 | 3 | 4 |
對(duì)應(yīng)的天數(shù)/天 | 40 | 20 | 20 | 10 | 10 |
乙每天生產(chǎn)的次品數(shù)/件 | 0 | 1 | 2 | 3 |
對(duì)應(yīng)的天數(shù)/天 | 30 | 25 | 25 | 20 |
(1)將甲每天生產(chǎn)的次品數(shù)記為(單位:件),日利潤(rùn)記為(單位:元),寫(xiě)出與的函數(shù)關(guān)系式;
(2)按這100天統(tǒng)計(jì)的數(shù)據(jù),分別求甲、乙兩名工人的平均日利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果三個(gè)常用對(duì)數(shù)中,任意兩個(gè)的對(duì)數(shù)尾數(shù)之和大于第三個(gè)對(duì)數(shù)尾數(shù),則稱(chēng)這三個(gè)正數(shù)可以構(gòu)成一個(gè)“對(duì)數(shù)三角形”.現(xiàn)從集合 M={7,8,9,10,11,12,13,14} 中選擇三個(gè)互異整數(shù)作成對(duì)數(shù)三角形,則不同的選擇方案有( )種.
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com