【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標方程是ρcos2θ=sinθ,以極點為原點,極軸為x軸正方向建立直角坐標系,點M(﹣1,0),直線l與曲線C交于A、B兩點.
(1)寫出直線l的極坐標方程與曲線C普通方程;
(2)線段MA,MB長度分別記為|MA|,|MB|,求|MA||MB|的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BA,CD的延長線相交于點E,EF∥DA,并與CB的延長線交于點F,F(xiàn)G切⊙O于G.
(1)求證:BEEF=CEBF;
(2)求證:FE=FG.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)以往的經(jīng)驗,某工程施工期間的將數(shù)量X(單位:mm)對工期的影響如下表:
降水量X | X<300 | 300≤X<700 | 700≤X<900 | X≥900 |
工期延誤天數(shù)Y | 0 | 2 | 6 | 10 |
歷年氣象資料表明,該工程施工期間降水量X小于300,700,900的概率分別為0.3,0.7,0.9,求:
(I)工期延誤天數(shù)Y的均值與方差;
(Ⅱ)在降水量X至少是300的條件下,工期延誤不超過6天的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為4的等邊三角形,△ABD是等腰直角三角形,AD⊥BD,平面ABC⊥平面ABD,且EC⊥平面ABC,EC=2.
(1)求證:AD⊥BE
(2)求平面AEC和平面BDE所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的奇函數(shù)滿足,且在區(qū)間上是增函數(shù).,若方程在區(qū)間上有四個不同的根,則
A. -8 B. -4 C. 8 D. -16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列四個命題:
①“已知函數(shù)y=f(x),x∈ D,若D關(guān)于原點對稱,則函數(shù)y=f(x),x∈ D為奇函數(shù)”的逆命題;
②“對應(yīng)邊平行的兩角相等”的否命題;
③“若a≠0,則方程ax+b=0有實根”的逆否命題;
④“若A∪ B=B,則B≠A”的逆否命題.
其中的真命題是( )
A. ①② B. ②③
C. ①③ D. ③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定下列命題:①“若α=,則tan α=1”的逆否命題;②若f(x)=cos x,則f(x)為周期函數(shù);③“若a=b,則|a|=|b|”的逆命題;④“若xy=0,則x,y中至少有一個為零”的否命題.其中真命題的序號是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線、橢圓都經(jīng)過點M(1,2),它們在x軸上有共同焦點,橢圓的對稱軸是坐標軸,拋物線的頂點為坐標原點.則橢圓的長軸長為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,斜三棱柱中,側(cè)面為菱形,底面是等腰直角三角形,,C.
(1)求證:直線直線;
(2)若直線與底面ABC成的角為,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com