【題目】已知函數f(x)=x+ ,且f(1)=2.
(1)求m的值;
(2)判斷f(x)的奇偶性;
(3)用定義法證明f(x)在區(qū)間(1,+∞)上是增函數.
【答案】
(1)解:函數f(x)=x+ ,且f(1)=2,
可得1+m=2,即有m=1;
(2)解:f(x)=x+ 為奇函數.
理由:定義域為{x|x≠0}關于原點對稱.
且f(﹣x)=﹣x+ =﹣f(x),
則f(x)為奇函數;
(3)證明:設x1>x2>1,
則f(x1)﹣f(x2)=x1+ ﹣(x2+ )
=(x1﹣x2)+
=(x1﹣x2)(1﹣ ),
由x1>x2>1,可得x1x2>1,x1﹣x2>0,1﹣ >0,
可得f(x1)﹣f(x2)>0,即f(x1)>f(x2).
即f(x)在區(qū)間(1,+∞)上是增函數
【解析】(1)代入x=1,解方程可得m的值;(2)f(x)=x+ 為奇函數.運用奇函數的定義,注意定義域關于原點對稱,f(﹣x)=﹣f(x);(3)運用單調性的定義證明,設值、作差、變形和定符號、下結論等步驟.
【考點精析】本題主要考查了函數單調性的判斷方法和函數的奇偶性的相關知識點,需要掌握單調性的判定法:①設x1,x2是所研究區(qū)間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較;偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知奇函數f(x)在(﹣∞,0)上單調遞減,且f(2)=0,則不等式xf(x﹣1)>0的解集是( )
A.(﹣3,﹣1)
B.(﹣3,1)∪(2,+∞)
C.(﹣3,0)∪(3,+∞)
D.(﹣1,0)∪(1,3)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,內角A,B,C的對邊分別為a,b,c,且(2b-c)cos A=acos C.
(1)求角A的大小;
(2)若a=3,b=2c,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某研究所計劃利用“神七”宇宙飛船進行新產品搭載實驗,計劃搭載新產品、,該所要根據該產品的研制成本、產品重量、搭載實驗費用、和預計產生收益來決定具體安排.通過調查,有關數據如下表:
產品A(件) | 產品B(件) | ||
研制成本、搭載費用之和(萬元) | 20 | 30 | 計劃最大資金額300萬元 |
產品重量(千克) | 10 | 5 | 最大搭載重量110千克 |
預計收益(萬元) | 80 | 60 |
如何安排這兩種產品的件數進行搭載,才能使總預計收益達到最大,最大收益是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩家商場對同一種商品開展促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:
甲商場:顧客轉動如圖所示圓盤,當指針指向陰影部分(圖中四個陰影部分均為扇形,且每個扇形圓心角均為15°,邊界忽略不計) 即為中獎.
乙商場:從裝有3個白球3個紅球的盒子中一次性摸出2個球(球除顏色外不加區(qū)分),如果摸到的是2個紅球,即為中獎.
問:購買該商品的顧客在哪家商場中獎的可能性大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓: ()的離心率為,以橢圓的四個頂點為頂點的四邊形的面積為8.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,斜率為的直線與橢圓交于, 兩點,點在直線的左上方.若,且直線, 分別與軸交于, 點,求線段的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=( )x , 函數g(x)=log x.
(1)若g(ax2+2x+1)的定義域為R,求實數a的取值范圍;
(2)當x∈[( )t+1 , ( )t]時,求函數y=[g(x)]2﹣2g(x)+2的最小值h(t);
(3)是否存在非負實數m,n,使得函數y=log f(x2)的定義域為[m,n],值域為[2m,2n],若存在,求出m,n的值;若不存在,則說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com