【題目】如圖,在直三棱柱中,,,是棱的中點(diǎn).
(1)求證:;
(2)求證:.
【答案】(1)見詳解;(2)見詳解.
【解析】
(1)連接AC1,設(shè)AC1∩A1C=O,連接OD,可求O為AC1的中點(diǎn),D是棱AB的中點(diǎn),利用中位線的性質(zhì)可證OD∥BC1,根據(jù)線面平行的判斷定理即可證明BC1∥平面A1CD.
(2)由(1)可證平行四邊形ACC1A1是菱形,由其性質(zhì)可得AC1⊥A1C,利用線面垂直的性質(zhì)可證AB⊥AA1,根據(jù)AB⊥AC,利用線面垂直的判定定理可證AB⊥平面ACC1A1,利用線面垂直的性質(zhì)可證AB⊥A1C,又AC1⊥A1C,根據(jù)線面垂直的判定定理可證A1C⊥平面ABC1,利用線面垂直的性質(zhì)即可證明BC1⊥A1C.
(1)連接AC1,設(shè)AC1∩A1C=O,連接OD,在直三棱柱ABC﹣A1B1C1中,側(cè)面ACC1A1是平行四邊形,
所以:O為AC1的中點(diǎn),又因?yàn)椋篋是棱AB的中點(diǎn),所以:OD∥BC1,
又因?yàn)椋築C1平面A1CD,OD平面A1CD,所以:BC1∥平面A1CD.
(2)由(1)可知:側(cè)面ACC1A1是平行四邊形,因?yàn)椋篈C=AA1,所以:平行四邊形ACC1A1是菱形,
所以:AC1⊥A1C,在直三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,因?yàn)椋篈B平面ABC,所以:AB⊥AA1,
又因?yàn)椋篈B⊥AC,AC∩AA1=A,AC平面ACC1A1,AA1平面ACC1A1,
所以:AB⊥平面ACC1A1,因?yàn)椋篈1C平面ACC1A1,所以:AB⊥A1C,
又因?yàn)椋篈C1⊥A1C,AB∩AC1=A,AB平面ABC1,AC1平面ABC1,所以:A1C⊥平面ABC1,
因?yàn)椋築C1平面ABC1,所以:BC1⊥A1C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,,,,點(diǎn)Q在棱AB上.
(1)證明:平面.
(2)若三棱錐的體積為,求點(diǎn)B到平面PDQ的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投人某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)對年銷售額(單位:萬元)的影響,對近6年的年宣傳費(fèi)和年銷售額數(shù)據(jù)進(jìn)行了研究,發(fā)現(xiàn)宣傳費(fèi)和年銷售額具有線性相關(guān)關(guān)系,并對數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計(jì)量的值.
(I)根據(jù)表中數(shù)據(jù)建立關(guān)于的回歸方程;
(Ⅱ)利用(I)中的回歸方程預(yù)測該公司如果對該產(chǎn)品的宜傳費(fèi)支出為10萬元時(shí)銷售額是萬元,該公司計(jì)劃從10名中層管理人員中挑選3人擔(dān)任總裁助理,10名中層管理人員中有2名是技術(shù)部骨干,記所挑選3人中技術(shù)部骨干人數(shù)為且隨機(jī)變量,求的概率分布列與數(shù)學(xué)期望.
附:回歸直線的傾斜率截距的最小二乘估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,設(shè)a∈R,若關(guān)于x的不等式f(x)≥| +a|在R上恒成立,則a的取值范圍是( 。
A.[﹣ ,2]
B.[﹣ , ]
C.[﹣2 ,2]
D.[﹣2 , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】米勒問題,是指德國數(shù)學(xué)家米勒1471年向諾德爾教授提出的有趣問題:在地球表面的什么部位,一根垂直的懸桿呈現(xiàn)最長(即可見角最大?)米勒問題的數(shù)學(xué)模型如下:如圖,設(shè) 是銳角的一邊上的兩定點(diǎn),點(diǎn)是邊邊上的一動(dòng)點(diǎn),則當(dāng)且僅當(dāng)的外接圓與邊相切時(shí),最大.若,點(diǎn)在軸上,則當(dāng)最大時(shí),點(diǎn)的坐標(biāo)為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù),.
(1)若在上單調(diào)遞增,求正數(shù)的最大值;
(2)若函數(shù)在內(nèi)恰有一個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=excosx﹣x.(13分)
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[0, ]上的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com