已知函數(shù)f(x)=x3+3ax-1的導(dǎo)函數(shù)為f(x),g(x)=f(x)-ax-3.
(1)當(dāng)a=-2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)滿足-1≤a≤1的一切a的值,都有g(shù)(x)<0,求實(shí)數(shù)x的取值范圍;
(3)若x•g(x)+lnx>0對(duì)一切x≥2恒成立,求實(shí)數(shù)a的取值范圍.
【答案】分析:(1)當(dāng)a=-2時(shí),求函數(shù)f(x)=x3+3ax-1的導(dǎo)函數(shù)為f(x),令f(x)>0,求出單調(diào)增區(qū)間;令f(x)<0求出單調(diào)減區(qū)間;
(2)若對(duì)滿足-1≤a≤1的一切a的值,都有g(shù)(x)<0,變更主元,轉(zhuǎn)化為關(guān)于a的一次函數(shù),求出實(shí)數(shù)x的取值范圍;
(3)依題意,x•g(x)+lnx>0對(duì)一切x≥2恒成立,采取分離參數(shù)的方法,轉(zhuǎn)化為求函數(shù)的最值問(wèn)題.
解答:解:(1)當(dāng)a=-2時(shí),f′(x)=3x2-6.令f′(x)=0得,
故當(dāng)或x>時(shí)f′(x)>0,f′(x)單調(diào)遞增;
當(dāng)時(shí)f(x)<0,f(x)單調(diào)遞減.
所以函數(shù)f′(x)的單調(diào)遞增區(qū)間為(,[);單調(diào)遞減區(qū)間為

(2)因f′(x)=3a2+3a,故g(x)=3x2-ax+3a-3.
令g(x)=h(a)=a(3-x)+3x2-3,要使h(a)<0對(duì)滿足-1≤a≤1的一切a成立,
,解得;


(3)因?yàn)間(x)=6x-a,
所以X(6x-a)+lnx>0
對(duì)一切x≥2恒成立.,
令6x2+1-lnx=φ(x),
因?yàn)閤≥2,所以φ(x)>0,
故φ(x)在[2,+∞)單調(diào)遞增,有φ(x)≥φ(2)=25-ln2>0.
因此h(x)>0,從而
所以a
點(diǎn)評(píng):考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值問(wèn)題,特別是恒成立問(wèn)題,(2)若對(duì)滿足-1≤a≤1的一切a的值,都有g(shù)(x)<0,變更主元,轉(zhuǎn)化為關(guān)于a的一次函數(shù),求出實(shí)數(shù)x的取值范圍;(3)x•g(x)+lnx>0對(duì)一切x≥2恒成立,采取分離參數(shù)的方法,轉(zhuǎn)化為求函數(shù)的最值問(wèn)題體現(xiàn)了轉(zhuǎn)化的思想方法,屬難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案