正四棱錐的側棱長為,底面邊長為,為中點,則異面直線與所成的角是 .
解析試題分析:連接底面正方形ABCD對角線AC、BD,取底面ABCD對角線AC的中點F,連接EF,BD,說明EF與BE的成角是BE與SC的成角,通過在△BFE中根據余弦定理,BF2=EF2+BE2-2EF•BEcos∠BEF,求出cos∠BEF解得異面直線BE與SC所成角的大。
連接底面正方形ABCD對角線AC、BD,取底面ABCD對角線AC的中點F,連接EF,BD,EF是三角形ASC的中位線,EF∥SC,且EF=SC,則EF與BE的成角是BE與SC的成角, BF=,AB=
,EF=,三角形SAB是等腰三角形,從S作SG⊥AB,
cosA==,根據余弦定理,BE2=AE2+AB2-2AE•AB•cosA=2,BE=,在△BFE中根據余弦定理,BF2=EF2+BE2-2EF•BEcos∠BEF,cos∠BEF=,∠BEF=60°;
異面直線BE與SC所成角的大小60°.
故答案為:60°
考點:本題主要是考查異面直線及其所成的角,考查計算能力,是基礎題
點評:解決該試題的關鍵是利用平移法得到相交直線的夾角,即為異面直線所成的角。進而得到結論。
科目:高中數(shù)學 來源: 題型:填空題
已知直線m,n與平面α,β,給出下列三個命題:
①若m∥α,n∥α,則m∥n;
②若m∥α,n⊥α,則n⊥m;
③若m⊥α,m∥β,則α⊥β.
其中真命題的個數(shù)是______個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
有三個平面,β,γ,給出下列命題:
①若,β,γ兩兩相交,則有三條交線 ②若⊥β,⊥γ,則β∥γ
③若⊥γ,β∩=a,β∩γ=b,則a⊥b ④若∥β,β∩γ=,則∩γ=
其中真命題是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
已知向量p的模是,向量q的模為1,p與q的夾角為,a=3p+2q,b=p-q,則以a、b為鄰邊的平行四邊形的長度較小的對角線的長是________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com