【題目】已知集合 為集合Un個(gè)非空子集,這n個(gè)集合滿足:①?gòu)闹腥稳?/span>m個(gè)集合都有 成立;②從中任取個(gè)集合都有 成立.

Ⅰ)若, ,寫(xiě)出滿足題意的一組集合;

Ⅱ)若, ,寫(xiě)出滿足題意的一組集合以及集合;

) , ,求集合中的元素個(gè)數(shù)的最小值.

【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)詳見(jiàn)解析.

【解析】試題(Ⅰ)根據(jù)題意一一列舉即可;(Ⅱ)根據(jù)題意一一列舉即可;(Ⅲ)利用反證法進(jìn)行證明.

試題解析:(Ⅰ, ,

, , ,

Ⅲ)集合中元素個(gè)數(shù)的最小值為120個(gè).

下面先證明若,

, ,

反證法:假設(shè),不妨設(shè)

由假設(shè),設(shè),設(shè),

中都沒(méi)有的元素,

因?yàn)?/span>四個(gè)子集的并集為

所以矛盾,所以假設(shè)不正確.

,且,

成立.則個(gè)集合的并集共計(jì)有個(gè).

把集合120個(gè)元素與3個(gè)元素的并集

建立一一對(duì)應(yīng)關(guān)系,所以集合中元素的個(gè)數(shù)大于等于120.

下面我們構(gòu)造一個(gè)有120個(gè)元素的集合

把與 ()對(duì)應(yīng)的元素放在異于的集合中,因此對(duì)于任意一個(gè)個(gè)集合的并集,它們都不含與對(duì)應(yīng)的元素,所以.同時(shí)對(duì)于任意的個(gè)集合不妨為的并集,

則由上面的原則與對(duì)應(yīng)的元素在集合中,

即對(duì)于任意的個(gè)集合的并集為全集

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,人們更加關(guān)注如何高效地獲取有價(jià)值的信息,網(wǎng)絡(luò)知識(shí)付費(fèi)近兩年呈現(xiàn)出爆發(fā)式的增長(zhǎng),為了了解網(wǎng)民對(duì)網(wǎng)絡(luò)知識(shí)付費(fèi)的態(tài)度,某網(wǎng)站隨機(jī)抽查了歲及以上不足歲的網(wǎng)民共人,調(diào)查結(jié)果如下:

(1)請(qǐng)完成上面的列聯(lián)表,并判斷在犯錯(cuò)誤的概率不超過(guò)的前提下,能否認(rèn)為網(wǎng)民對(duì)網(wǎng)絡(luò)知識(shí)付費(fèi)的態(tài)度與年齡有關(guān)?

(2)在上述樣本中用分層抽樣的方法,從支持和反對(duì)網(wǎng)絡(luò)知識(shí)付費(fèi)的兩組網(wǎng)民中抽取名,若在上述名網(wǎng)民中隨機(jī)選人,求至少1人支持網(wǎng)絡(luò)知識(shí)付費(fèi)的概率.

附:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某區(qū)“創(chuàng)文明城區(qū)”簡(jiǎn)稱“創(chuàng)城”活動(dòng)中,教委對(duì)本區(qū)A,BC,D四所高中校按各校人數(shù)分層抽樣調(diào)查,將調(diào)查情況進(jìn)行整理后制成如表:

學(xué)校

A

B

C

D

抽查人數(shù)

50

15

10

25

“創(chuàng)城”活動(dòng)中參與的人數(shù)

40

10

9

15

注:參與率是指:一所學(xué)!皠(chuàng)城”活動(dòng)中參與的人數(shù)與被抽查人數(shù)的比值

假設(shè)每名高中學(xué)生是否參與“創(chuàng)城”活動(dòng)是相互獨(dú)立的.

若該區(qū)共2000名高中學(xué)生,估計(jì)A學(xué)校參與“創(chuàng)城”活動(dòng)的人數(shù);

在隨機(jī)抽查的100名高中學(xué)生中,從AC兩學(xué)校抽出的高中學(xué)生中各隨機(jī)抽取1名學(xué)生,求恰有1人參與“創(chuàng)城”活動(dòng)的概率;

若將表中的參與率視為概率,從A學(xué)校高中學(xué)生中隨機(jī)抽取3人,求這3人參與“創(chuàng)城”活動(dòng)人數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):平面內(nèi)到兩個(gè)定點(diǎn)的距離之比為定值的點(diǎn)的軌跡是圓”.后來(lái),人們將這個(gè)圓以他的名字命名,稱為阿波羅尼斯圓,簡(jiǎn)稱阿氏圓.在平面直角坐標(biāo)系中,,,點(diǎn)滿足.設(shè)點(diǎn)的軌跡為,下列結(jié)論正確的是(

A.的方程為

B.上存在點(diǎn),使得

C.當(dāng),,三點(diǎn)不共線時(shí),射線的平分線

D.在三棱錐中,且,,,該三棱錐體積最大值為12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCD,ADAB,ABDCADDCAP2,AB1,點(diǎn)E為棱PC的中點(diǎn).

(1)證明:BEDC

(2)求直線BE與平面PBD所成角的正弦值;

(3)F為棱PC上一點(diǎn),滿足BFAC,求二面角FABP的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(I)討論的單調(diào)性;

(II)若恒成立,證明:當(dāng)時(shí),.

(III)在(II)的條件下,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)恰好是橢圓的右焦點(diǎn).

1)求實(shí)數(shù)的值及拋物線的準(zhǔn)線方程;

2)過(guò)點(diǎn)任作兩條互相垂直的直線分別交拋物線、點(diǎn),求兩條弦的弦長(zhǎng)之和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知ABC三個(gè)頂點(diǎn)坐標(biāo)為A(7,8)B(10,4)C(2,-4)

(1)求BC邊上的中線所在直線的方程;

(2)求BC邊上的高所在直線的方程.

【答案】(1);(2)

【解析】試題分析:(1)根據(jù)中點(diǎn)坐標(biāo)公式求出中點(diǎn)的坐標(biāo),根據(jù)斜率公式可求得的斜率,利用點(diǎn)斜式可求邊上的中線所在直線的方程;(2)先根據(jù)斜率公式求出的斜率,從而求出邊上的高所在直線的斜率為,利用點(diǎn)斜式可求邊上的高所在直線的方程.

試題解析:1)由B(10,4),C(2,-4),BC中點(diǎn)D的坐標(biāo)為(6,0),

所以AD的斜率為k8,

所以BC邊上的中線AD所在直線的方程為y08(x6),

8xy480

2)由B(104),C(2,-4)BC所在直線的斜率為k1,

所以BC邊上的高所在直線的斜率為-1

所以BC邊上的高所在直線的方程為y8=-(x7),即xy150

型】解答
結(jié)束】
17

【題目】已知直線lx2y2m20

(1)求過(guò)點(diǎn)(2,3)且與直線l垂直的直線的方程;

(2)若直線l與兩坐標(biāo)軸所圍成的三角形的面積大于4,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案