已知不等式
2x+1
>1
的解集為A,不等式x2-(2+a)x+2a<0的解集為B.
(1)求集合A及B;    (2)若A⊆B,求實數(shù)a的取值范圍.
分析:(1)直接解不等式求出集合A,對a討論求出集合B.
(2)借助(1)通過A⊆B,直接求出a的值即可.
解答:解:(1)由
2
x+1
>1
,得
2-1-x
x+1
>0
x-1
x+1
<0

解得-1<x<1.∴A={x|-1<x<1}.
由x2-(2+a)x+2a<0,得(x-2)(x-a)<0.
①若a>2,則B=(2,a); 
②若a=2,則B=∅;  
③若a<2,則B=(a,2).
(2)要使A⊆B,則a<2.并且a≤-1.
所以,當(dāng)a≤-1時,A⊆B.
點評:本題是中檔題,考查集合的基本關(guān)系與基本運算,注意分類討論的應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式2x-1>m(x2-1).
(1)若對于所有實數(shù)x,不等式恒成立,求m的取值范圍;
(2)若對于m∈[-2,2]不等式恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若已知不等式2x-1>m(x2-1)對滿足|m|≤2的一切實數(shù)m的取值都成立,則x的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式2x-1>m(x2-1)對于m∈[0,1]恒成立,則實數(shù)x的取值范圍為
(
1
2
,2)
(
1
2
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式2x-1>m(x2-1)對一切|m|≤2恒成立,則實數(shù)x的取值范圍是
-1+
7
2
1+
3
2
-1+
7
2
,
1+
3
2

查看答案和解析>>

同步練習(xí)冊答案