【題目】已知函數(shù),)為奇函數(shù),且相鄰兩對稱軸間的距離為

1)當(dāng)時,求的單調(diào)遞減區(qū)間;

2)將函數(shù)的圖象沿軸方向向右平移個單位長度,再把橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),得到函數(shù)的圖象.當(dāng)時,求函數(shù)的值域.

【答案】1]2)值域?yàn)?/span>[]

【解析】

(1)利用三角恒等變換化簡的解析式,根據(jù)條件,可求出周期,結(jié)合奇函數(shù)性質(zhì),求出,再用整體代入法求出內(nèi)的遞減區(qū)間;

(2)利用函數(shù)的圖象變換規(guī)律,求出的解析式,再利用正弦函數(shù)定義域,即可求出時的值域.

解:(1)由題意得,

因?yàn)橄噜弮蓪ΨQ軸之間距離為,所以

又因?yàn)楹瘮?shù)為奇函數(shù),所以,∴,

因?yàn)?/span>,所以

故函數(shù)

..

,

因?yàn)?/span>,所以函數(shù)的單調(diào)遞減區(qū)間為,]

2)由題意可得,

因?yàn)?/span>,所以

所以,.

即函數(shù)的值域?yàn)?/span>[,]

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中的導(dǎo)函數(shù).

.

1)求的表達(dá)式;

2)求證:,其中nN*.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn),直線與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐如圖一)的平面展開圖(如圖二)中,四邊形為邊長等于的正方形均為正三角形,在三棱錐中:

(I)證明:平面平面;

Ⅱ)若點(diǎn)在棱上運(yùn)動,當(dāng)直線與平面所成的角最大時,求二面角的余弦值.

圖一

圖二

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的個數(shù)是(

A=的子集有個;

②命題的否定是使得

函數(shù)取得最大值的充分不必要條件;

④根據(jù)對數(shù)定義,對數(shù)式化為指數(shù)式

⑤若,則的取值范圍為

.

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:

(1)求分?jǐn)?shù)在[120,130)內(nèi)的頻率;

(2)估計(jì)本次考試的中位數(shù);

(3)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有1人在分?jǐn)?shù)段[120,130)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

1)解方程

2)令,求的值.

3)若是定義在上的奇函數(shù),且對任意恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在上的函數(shù)、,滿足,且對任意實(shí)數(shù)),恒有成立.

⑴試寫 出一組滿足條件的具體的,使為增函數(shù),為減函數(shù),但為增函數(shù).

⑵判斷下列兩個命題的真假,并說明理由.

命題1):若為增函數(shù),則為增函數(shù);

命題2):若為增函數(shù),則為增函數(shù).

⑶已知,寫出一組滿足條件的具體的,且為非常值函數(shù),并說明理由.

查看答案和解析>>

同步練習(xí)冊答案