已知橢圓的離心率,且橢圓過點(diǎn).

(1)求橢圓的方程;

(2)若為橢圓上的動(dòng)點(diǎn),為橢圓的右焦點(diǎn),以為圓心,長(zhǎng)為半徑作圓,過點(diǎn)作圓的兩條切線,(為切點(diǎn)),求點(diǎn)的坐標(biāo),使得四邊形的面積最大.]

 

【答案】

(1)依題意得,

                ………………………………3分

 

解得,                

所以橢圓的方程為.           ………………………………4分

 

(2)設(shè) ,圓,

其中

,……6分

……7分

 

在橢圓上,

 

   

 

 

所以,  ………………………8分

 

,

 

…………………9分

 

當(dāng)時(shí),,當(dāng)時(shí), …………………10分

 

所以當(dāng)時(shí),有最大值,

 

時(shí),四邊形面積取得最大值…11分

 

此時(shí)點(diǎn)的坐標(biāo)為…………………………12分

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010年重慶一中高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓的離心率,且右焦點(diǎn)F到左準(zhǔn)線的距離為3.
(1)求橢圓C的方程;
(2)已知B為橢圓C在y軸的左測(cè)上一點(diǎn),線段BF與拋物線y2=2px(p>0)交于A,且滿足,求p的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省濟(jì)南市高三3月高考模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的離心率為,且過點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)四邊形ABCD的頂點(diǎn)在橢圓上,且對(duì)角線A   C、BD過原點(diǎn)O,若,

(i) 求的最值.

(ii) 求證:四邊形ABCD的面積為定值;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省馬鞍山市高三第一次教學(xué)質(zhì)量檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)

已知橢圓的離心率,且短半軸為其左右焦點(diǎn),是橢圓上動(dòng)點(diǎn).

(Ⅰ)求橢圓方程;

(Ⅱ)當(dāng)時(shí),求面積;

(Ⅲ)求取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省皖南八校高三第二次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知橢圓的離心率,且過點(diǎn)
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)垂直于坐標(biāo)軸的直線l與橢圓C相交于A、B兩點(diǎn),若以AB為直徑的圓D經(jīng)過坐標(biāo)原點(diǎn).證明:圓D的半徑為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案