【題目】以直角坐標系的原點為極點, 軸的正半軸為極軸,且兩個坐標系取相等的長度單位,已知直線的參數(shù)方程為參數(shù))曲線的極坐標方程為.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)設直線與曲線相交于兩點,當變化時,求的最小值.

【答案】(1)曲線C的直角坐標方程為 (2)當時, 的最小值為4.

【解析】試題分析】(1)依據(jù)題設先將直線的參數(shù)方程化為直角坐標方程,再運用直角坐標與極坐標的互化公式將曲線的極坐標方程化為直角坐標方程;(2)將直線的參數(shù)方程代入曲線的直角坐標方程, 得,

A、B兩點對應的參數(shù)分別為, 則, , 然后求出 算得當時, 的最小值為4.

解: (1) 由消去,

所以直線的普通方程為.

, 得,

代入上式, 得,

所以曲線C的直角坐標方程為.

(2) 將直線l的參數(shù)方程代入, 得,

A、B兩點對應的參數(shù)分別為,

, ,

所以 .

時, 的最小值為4.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】f(x)=(m﹣1)x2+2mx+3為偶函數(shù),則f(x)在區(qū)間(2,5)上是(
A.減函數(shù)
B.增函數(shù)
C.有增有減
D.增減性不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣a)(x+2)為偶函數(shù),若g(x)= ,則a= , g[g(﹣ )]=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸上,離心率為,且經(jīng)過點,直線 交橢圓于 兩不同的點.

(1)求橢圓的方程;

(2)若直線不過點,求證:直線, 軸圍成等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著手機的發(fā)展,“微信”越來越成為人們交流的一種方式.某機構對“使用微信交流”的態(tài)度進行調(diào)查,隨機抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如下表.

年齡(單位:歲)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(Ⅰ)若以“年齡”45歲為分界點,由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認為“使用微信交流”的態(tài)度與人的年齡有關;

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計

贊成

不贊成

合計

(Ⅱ)若從年齡在的被調(diào)查人中按照分層抽樣的方法選取6人進行追蹤調(diào)查,并給予其中3人“紅包”獎勵,求3人中至少有1人年齡在的概率.

參考數(shù)據(jù)如下:

附臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的觀測值: (其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有兩個零點 ,則下面說法正確的是( )

A. B. C. D. 有極小值點,且

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=loga(3﹣ax)(a>0,a≠1)
(1)當a=3時,求函數(shù)f(x)的定義域;
(2)若g(x)=f(x)﹣loga(3+ax),請判定g(x)的奇偶性;
(3)是否存在實數(shù)a,使函數(shù)f(x)在[2,3]遞增,并且最大值為1,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.
(1)求a,k的值;
(2)當x為何值時,f(logax)有最小值?求出該最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=log2 . (Ⅰ)判斷f(x)奇偶性并證明;
(Ⅱ)用單調(diào)性定義證明函數(shù)g(x)= 在函數(shù)f(x)定義域內(nèi)單調(diào)遞增,并判斷f(x)=log2 在定義域內(nèi)的單調(diào)性.

查看答案和解析>>

同步練習冊答案