【題目】如圖,在底面是直角梯形的四棱錐S-ABCD中,面.
(1)求四棱錐S-ABCD的體積;
(2)求證:面
(3)求SC與底面ABCD所成角的正切值。
【答案】(1);(2)見解析(3).
【解析】
(1)根據(jù)梯形的面積公式及四棱錐的體積公式直接求值即可.
(2)先由SA⊥面ABCD,可得SA⊥BC,再由AB⊥BC ,得BC⊥平面SAB,從而證得平面SAB⊥平面SBC.
(3)找到線面角是解決問題的關鍵.連接AC ∵SA⊥面ABCD
∴∠SCA為SC與底面ABCD所成的角,然后解三角形即可.
證明:(1)S梯形ABCD=(AD+BC)·AB=(+1)×1=
VS-ABCD=××1=……………2分
(2)∵SA⊥面ABCD ∴SA⊥BC……………………………………3分
又AB⊥BC ∴BC⊥平面SAB
∴平面SAB⊥平面SBC……………………………………5分
(3)連接AC ∵SA⊥面ABCD
∴∠SCA為SC與底面ABCD所成的角……………………………………7分
在Rt△ABC中,AC==
在Rt△SAC中,tan∠SCA===……………………………………9分
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,橢圓過點,直線交軸于,且, 為坐標原點.
(1)求橢圓的方程;
(2)設是橢圓的上頂點,過點分別作直線交橢圓于兩點,設這兩條直線的斜率分別為,且,證明:直線過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列{an}中,a1=,其前n項和為Sn,且Sn=an+1- (n∈N*).
(1)求an,Sn;
(2)設bn=log2(2Sn+1)-2,數(shù)列{cn}滿足cn·bn+3·bn+4=1+(n+1)(n+2)·2bn,數(shù)列{cn}的前n項和為Tn,求使4Tn>2n+1-成立的最小正整數(shù)n的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 如圖,在四棱錐P﹣ABCD中,側面PAD⊥底面ABCD,側棱PA=PD= ,PA⊥PD,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O為AD中點.
(1) 求直線PB與平面POC所成角的余弦值;
(2)線段上是否存在一點,使得二面角的余弦值為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且a2=8,Sn= ﹣n﹣1.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{ }的前n項和Tn .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com