精英家教網 > 高中數學 > 題目詳情

【題目】動點在橢圓上,過點軸的垂線,垂足為,點滿足,已知點的軌跡是過點的圓.

1)求橢圓的方程;

2)設直線與橢圓交于兩點(,軸的同側),為橢圓的左、右焦點,若,求四邊形面積的最大值.

【答案】1;(23

【解析】

1)設點,,得到,點的軌跡是過的圓,故,得到橢圓方程.

2)如圖,延長于點,由對稱性可知:,設,,直線的方程為,聯(lián)立方程得到,,計算,利用均值不等式得到答案.

1)設點,,則點,

,,,

在橢圓上,,即為點的軌跡方程.

的軌跡是過的圓,,解得

所以橢圓的方程為

2)如圖,延長于點,由對稱性可知:,

由(1)可知,,

,直線的方程為,

可得,

,,

,

的距離為,則四邊形面積

,

,

當且僅當,即時,取等號.

故四邊形面積的最大值為3

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知正四棱錐的底面邊長為高為其內切球與面切于點,球面上與距離最近的點記為,若平面過點,且與平行,則平面截該正四棱錐所得截面的面積為______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量,,函數

1)求函數的最小正周期與圖象的對稱軸方程;

2)若,函數的最小值是,最大值是2,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐ABCD中,都是等邊三角形,平面PAD平面ABCD,且

1)求證:CDPA

2E,F分別是棱PA,AD上的點,當平面BEF//平面PCD時,求四棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓的左頂點為,右焦點為,,為橢圓上兩點,圓.

(1)若軸,且滿足直線與圓相切,求圓的方程;

(2)若圓的半徑為2,點滿足,求直線被圓截得弦長的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】動點在橢圓上,過點軸的垂線,垂足為,點滿足,已知點的軌跡是過點的圓.

1)求橢圓的方程;

2)設直線與橢圓交于,兩點(,軸的同側),,為橢圓的左、右焦點,若,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,底面ABC,,,DE分別為棱BC,PC的中點,點F在棱PA上,設

1)當時,求異面直線DFBE所成角的余弦值;

2)試確定t的值,使二面角C-EF-D的平面角的余弦值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,已知底面,,,,上一點.

1)求證:平面平面;

2)若的中點,且二面角的余弦值是,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知下列兩個命題,命題甲:平面α與平面β相交;命題乙:相交直線l,m都在平面α內,并且都不在平面β內,直線l,m中至少有一條與平面β相交.則甲是乙的(  。

A.充分且必要條件B.充分而不必要條件

C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案