【題目】某公司生產(chǎn)一種產(chǎn)品,第一年投入資金1000萬(wàn)元,出售產(chǎn)品收入40萬(wàn)元,預(yù)計(jì)以后每年的投入資金是上一年的一半,出售產(chǎn)品所得收入比上一年多80萬(wàn)元,同時(shí),當(dāng)預(yù)計(jì)投入的資金低于20萬(wàn)元時(shí),就按20萬(wàn)元投入,且當(dāng)年出售產(chǎn)品收入與上一年相等.

(1)求第年的預(yù)計(jì)投入資金與出售產(chǎn)品的收入;

(2)預(yù)計(jì)從哪一年起該公司開(kāi)始盈利?(注:盈利是指總收入大于總投入)

【答案】(1), ;(2)第8年.

【解析】試題解析:

解:(1)設(shè)第年的投入資金和收入金額分別為萬(wàn)元, 萬(wàn)元.

依題意得,當(dāng)投入的資金不低于20萬(wàn)元,即時(shí), ,

此時(shí), 是首項(xiàng)為1000,公比為的等比數(shù)列;

是首項(xiàng)為40,公差為80的等差數(shù)列,

所以,

,得,解得

所以, .

(2)由(1)可知當(dāng)時(shí),總利潤(rùn)

,

所以, ,

因?yàn)?/span>為增函數(shù), ,

所以,當(dāng)時(shí), ;當(dāng)時(shí), ,

又因?yàn)?/span>

所以,當(dāng)時(shí), ,即前6年未盈利,

當(dāng)時(shí), ,

,得.

綜上,預(yù)計(jì)該公司從第8年起開(kāi)始盈利.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

)若,證明:,恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù)在點(diǎn)處的切線(xiàn)與直線(xiàn)平行

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知以為圓心的圓及其上一點(diǎn).

(1)設(shè)圓軸相切,與圓外切,且圓心在直線(xiàn)上,求圓的標(biāo)準(zhǔn)方程;

(2)設(shè)平行于的直線(xiàn)與圓相交于,兩點(diǎn),且,求直線(xiàn)的方程;

(3)設(shè)點(diǎn)滿(mǎn)足:存在圓上的兩點(diǎn),使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知以為圓心的圓及其上一點(diǎn).

(1)設(shè)圓軸相切,與圓外切,且圓心在直線(xiàn)上,求圓的標(biāo)準(zhǔn)方程;

(2)設(shè)平行于的直線(xiàn)與圓相交于兩點(diǎn),且,求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年入冬以來(lái),各地霧霾天氣頻發(fā), 頻頻爆表(是指直徑小于或等于2.5微米的顆粒物),各地對(duì)機(jī)動(dòng)車(chē)更是出臺(tái)了各類(lèi)限行措施,為分析研究車(chē)流量與的濃度是否相關(guān),某市現(xiàn)采集周一到周五某一時(shí)間段車(chē)流量與的數(shù)據(jù)如下表:

時(shí)間

周一

周二

周三

周四

周五

車(chē)流量(萬(wàn)輛)

50

51

54

57

58

的濃度(微克/立方米)

69

70

74

78

79

(1)請(qǐng)根據(jù)上述數(shù)據(jù),在下面給出的坐標(biāo)系中畫(huà)出散點(diǎn)圖;

(2)試判斷是否具有線(xiàn)性關(guān)系,若有請(qǐng)求出關(guān)于的線(xiàn)性回歸方程,若沒(méi)有,請(qǐng)說(shuō)明理由;

(3)若周六同一時(shí)間段的車(chē)流量為60萬(wàn)輛,試根據(jù)(2)得出的結(jié)論,預(yù)報(bào)該時(shí)間段的的濃度(保留整數(shù)).

參考公式: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的定義域;
(2)求f(1)+f(﹣3)的值;
(3)求f(a+1)的值(其中a>﹣4且a≠1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知不等式對(duì)任意實(shí)數(shù)恒成立.

(Ⅰ)求實(shí)數(shù)的最小值;

(Ⅱ)若,且滿(mǎn)足,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)),曲線(xiàn)的普通方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),的正半軸為極軸建立極坐標(biāo)系.

I)求直線(xiàn)的極坐標(biāo)方程與曲線(xiàn)的參數(shù)方程;

II設(shè)點(diǎn)D在曲線(xiàn)上,曲線(xiàn)點(diǎn)D處的切線(xiàn)與直線(xiàn)垂直,確定點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案