在等差數(shù)列{an}中,我們有an=am+(n-m)d,類比等差數(shù)列,在等比數(shù)列{an}中an與am之間的關(guān)系為
 
考點(diǎn):類比推理
專題:探究型,推理和證明
分析:因為等差數(shù)列{an}中,an=am+(n-m)d (m,n∈N+),即等差數(shù)列中任意給出第m項am,它的通項可以由該項與公差來表示,推測等比數(shù)列中也是如此,給出第m項bm和公比,求出首項,再把首項代入等比數(shù)列的通項公式中,即可得到結(jié)論.
解答: 解:在等差數(shù)列{an}中,我們有an=am+(n-m)d,類比等差數(shù)列,等比數(shù)列中也是如此,給出第m項bm和公比,an與am之間的關(guān)系為an=am+qn-m
故答案為:an=am+qn-m
點(diǎn)評:本題考查類比思想,考查等比數(shù)列的通項的性質(zhì),考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
2x-1
2x+1
,則f(1)+f(2)+…+f(2013)+f(
1
2
)+f(
1
3
)+…f(
1
2013
)═
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log
1
2
|sinx|,則下列結(jié)論中正確的是:
 

(1)定義域為R;      
(2)函數(shù)的值域為[0,+∞);      
(3)f(x)為偶函數(shù);
(4)f(x)的周期T=π.;      
(5)f(x)的單調(diào)遞增區(qū)間是:[kπ-
π
2
,kπ](k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)f(x)=lnx-2+x在區(qū)間(1,e)上存在零點(diǎn);
②若m≥-1,則函數(shù)y=log 
1
2
(x2-2x-m)的值域為R;
③若f′(x0)=0,則函數(shù)y=f(x)在x=x0處取得極值;
④“a=1”是“函數(shù)f(x)=
a-ex
1+aex
在定義域上是奇函數(shù)”的充分不必要條件.
其中正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=asin2x+btanx+2,且f(-3)=5,則f(3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的面積為
1
2
,sinA=
1
4
,則
1
b
+
2
c
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,半圓的直徑AB=12,O為圓心,C為半圓上不同于A、B的任意一點(diǎn),若P為半徑OC上的動點(diǎn),則(
PA
+
PB
)•
PC
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
3x-11
x+m
的圖象關(guān)于直線y=x對稱,則實數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,則這個幾何體的體積為( 。
A、
3
2
B、3
C、2
D、4

查看答案和解析>>

同步練習(xí)冊答案