【題目】已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)設(shè)點是軌跡上位于第一象限且在直線右側(cè)的動點,若以為圓心,線段為半徑的圓與有兩個公共點.試求圓在右焦點處的切線與軸交點縱坐標的取值范圍.
【答案】(1);(2).
【解析】分析:(1)由題知,原點到直線的距離,求得,再由,求得 ,即可得到橢圓的標準方程;
(2)設(shè),由圓的方程和性質(zhì),又由橢圓的方程得,代入可得,求得,又由切線方程為,令得,令,利用二次函數(shù)的性質(zhì),即可求解得的范圍,即可得到結(jié)論.
詳解:(1)由題知,原點到直線的距離
又,則
∴橢圓方程為
………………4分
(2)設(shè),點到軸的距離為,
∵圓M與y軸有兩個交點,∴,
即,
∴,
又,
即,
∴,∴,
∴, ……………………7分
又,∴ ……………………8分
切線方程為,令得
令,則
……………10分
,則,在
∴
∴切線與軸交點縱坐標的取值范圍為 ……………………12分
(轉(zhuǎn)化為求的斜率范圍得到更為簡便)
解法2:上面步驟相同
又,∴ ……………………8分
切線方程為,令得
又即
∴切線與軸交點縱坐標的取值范圍為 ……………………12分
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+1.
(Ⅰ)證明:當x>0時,f(x)≤x;
(Ⅱ)設(shè) ,若g(x)≥0對x>0恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我市物價監(jiān)督部門為調(diào)研某公司新開發(fā)上市的一種產(chǎn)品銷售價格的合理性,對該公司的產(chǎn)品的銷售與價格進行了統(tǒng)計分析,得到如下數(shù)據(jù)和散點圖:
定價(元/) | 10 | 20 | 30 | 40 | 50 | 60 |
年銷售 | 1150 | 643 | 424 | 262 | 165 | 86 |
14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
圖(1)為散點圖,圖(2)為散點圖.
(Ⅰ)根據(jù)散點圖判斷與,與哪一對具有較強的線性相關(guān)性(不必證明);
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果和參考數(shù)據(jù),建立關(guān)于的回歸方程(線性回歸方程中的斜率和截距均保留兩位有效數(shù)字);
(Ⅲ)定價為多少時,年銷售額的預(yù)報值最大?(注:年銷售額定價年銷售)
參考數(shù)據(jù):,,,,, ,,,
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4﹣4:極坐標與參數(shù)方程
極坐標系與直角坐標系xOy有相同的長度單位,以原點O為極點,以x軸正半軸為極軸.已知曲線C1的極坐標方程為 ,曲線C2的極坐標方程為ρsinθ=a(a>0),射線 , 與曲線C1分別交異于極點O的四點A,B,C,D.
(Ⅰ)若曲線C1關(guān)于曲線C2對稱,求a的值,并把曲線C1和C2化成直角坐標方程;
(Ⅱ)求|OA||OC|+|OB||OD|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,是橢圓上一點.
(1)求橢圓的標準方程;
(2)過橢圓右焦點的直線與橢圓交于兩點,是直線上任意一點.證明:直線的斜率成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過樣本點的中心(,)
C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:y2=2px過點P(1,1).過點(0, )作直線l與拋物線C交于不同的兩點M,N,過點M作x軸的垂線分別與直線OP、ON交于點A,B,其中O為原點.(14分)
(1)求拋物線C的方程,并求其焦點坐標和準線方程;
(2)求證:A為線段BM的中點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com