(本題滿分12分)
已知函數(shù)
(I)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;
(II)令,是否存在實(shí)數(shù),使得當(dāng)時(shí),函數(shù)的最小值是,若存在,求出實(shí)數(shù)的值,若不存在,說(shuō)明理由?
(III)當(dāng)時(shí),證明:
(I)                  …………………………………1分
上單調(diào)遞減,因此當(dāng)時(shí),恒成立
,化簡(jiǎn)得,
,即,………………………………4分
(II),         …………………………………5分
當(dāng)時(shí),單調(diào)遞減;單調(diào)遞增;
當(dāng)時(shí),單調(diào)遞減,
綜上                                    ………………………………8分
(III)由(II)可知
,,       …………………………………9分
當(dāng)時(shí),,單調(diào)遞增,
恒成立                …………………………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分16分)
已知函數(shù)是自然對(duì)數(shù)的底數(shù)).
(1)若曲線處的切線也是拋物線的切線,求的值;
(2)若對(duì)于任意恒成立,試確定實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),是否存在,使曲線在點(diǎn)處的切線斜率與 在上的最小值相等?若存在,求符合條件的的個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù)
(1)求函數(shù)的最大值;
(2)當(dāng)時(shí),求證;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列圖中陰影部分面積與算式的結(jié)果相同的是(    ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若過(guò)點(diǎn)(0,—1)作拋物線的兩條切線互相垂直,則a為(   )
A.1B.2C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)定義:若函數(shù)f(x)對(duì)于其定義域內(nèi)的某一數(shù)x0都有f (x0)= x0,則稱(chēng)x0是f (x)的一個(gè)不動(dòng)點(diǎn).已知函數(shù)f(x)= ax2+(b+1)x+b-1 (a≠0).
(Ⅰ)當(dāng)a =1,b= -2時(shí),求函數(shù)f(x)的不動(dòng)點(diǎn);
(Ⅱ)若對(duì)任意的實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)不動(dòng)點(diǎn),求a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,若y= f(x)圖象上兩個(gè)點(diǎn)A、B的橫坐標(biāo)是函數(shù)f(x)的不動(dòng)點(diǎn),
且A、B兩點(diǎn)關(guān)于直線y = kx+對(duì)稱(chēng),求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)設(shè)函數(shù)f(x)=(x>0且x≠1).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知2>xa對(duì)任意x∈(0,1)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間和最大值;
(2)若恒成立,求的取值范圍;
(3)證明:①上恒成立;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

=            

查看答案和解析>>

同步練習(xí)冊(cè)答案