設雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率e=
5
4
,則該雙曲線的漸近線方程為( 。
A、4x±3y=0
B、3x±4y=0
C、5x±3y=0
D、3x±5y=0
考點:雙曲線的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:由題意,
c
a
=
5
4
,可得b=
c2-a2
=
3
4
a,從而可求雙曲線的漸近線方程.
解答: 解:由題意,
c
a
=
5
4
,
∴c=
5
4
a,
∴b=
c2-a2
=
3
4
a,
∴雙曲線的漸近線方程為y=±
b
a
x=±
3
4
x,即3x±4y=0.
故選:B.
點評:本題考查雙曲線的幾何性質,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若樣本x1+2,x2+2,…,xn+2的平均數(shù)為10,方差為3,則樣本2x1+3,2x2+3,…,2xn+3的平均數(shù)、方差、標準差是( 。
A、19,12,2
3
B、23,12,2
3
C、23,18,3
2
D、19,18,3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2lnx+x2+ax,若曲線y=f(x)存在與直線2x-y=0平行的切線,則實數(shù)a的取值范圍是(  )
A、(-∞,-2]
B、(-∞,-2)
C、(-2,+∞)
D、[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法中,正確的是( 。
A、命題“若a<b,則am2<bm2”的否命題是真命題
B、已知x∈R,則“x>1”是“x>2”的充分不必要條件
C、命題“存在x∈R,x2-x>0”的否定是“對任意x∈R,x2-x<0”
D、用反證法證明命題“若a2+b2=0,則a,b全為0”(a,b∈R)時,應反設為a、b全不為0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),過雙曲線的右焦點F作其中一條漸近線的垂線,垂足為M,△OFM的內(nèi)切圓和x軸切于點N(其中O是坐標原點),而N恰是拋物線y2=3ax的焦點,則雙曲線的離心率為( 。
A、
4
3
B、
5
3
C、
5
4
D、
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
-x2+2x, x>0
0,         x=0
x2+mx, x<0
是奇函數(shù).
(1)求實數(shù)m的值;
(2)若函數(shù)f(x)在區(qū)間[-1,a-2]上單調遞增,求實數(shù)a的取值范圍;
(3)若函數(shù)f(x)=k有三個不同的實根,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
2
sin2x+sin2x-
3
2

(Ⅰ) 求函數(shù)f(x)在[0,
π
2
]的值域;
(Ⅱ)設△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,且c=
3
,f(C)=0,若向量
m
=(1,sinA),
n
=(2,sinB)共線,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等比數(shù)列{an}的前n項和為Sn,已知S1,S3,S2成等差數(shù)列.
(1)求數(shù)列{an}的公比q.
(2)若a1-a3=3,求Sn,并討論Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=8x的焦點為橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點,且橢圓的長軸長為4
2
,左右頂點分別為A,B,經(jīng)過橢圓左焦點的直線l與橢圓交于C、D兩點.
(1)求橢圓標準方程:
(2)記△ABD與△ABC的面積分別為S1和S2,且|S1-S2|=4,求直線l方程;
(3)橢圓的上頂點G作直線m、n,使m⊥n,直線m、n分別交橢圓于點P、Q.問:PQ是否過一定點,若是求出該點的坐標;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案