【題目】“生命重于泰山,疫情就是命令,防控就是責(zé)任”.面對疫情,為切實做好防控,落實“停課不停學(xué)”,某校高三年級啟動線上公益學(xué)習(xí)活動,助“戰(zhàn)”高考.為了解學(xué)生的學(xué)習(xí)效果,李華老師在任教的甲、乙兩個班中各隨機抽取20名學(xué)生進行一次檢測,根據(jù)他們?nèi)〉玫某煽儯▎挝唬悍郑瑵M分100分)繪制了如下莖葉圖,記成績不低于70分者為“成績優(yōu)良”.

1)分別估計甲、乙兩個班“成績優(yōu)良”的概率;

2)根據(jù)莖葉圖判斷哪個班的學(xué)習(xí)效果更好?并從兩個角度來說明理由.

【答案】1)甲班“成績優(yōu)良”的概率為,乙班“成績優(yōu)良”的概率為

2)乙班學(xué)習(xí)的效果更好,理由見解析

【解析】

1)通過莖葉圖的數(shù)據(jù)分析可得甲班成績優(yōu)良的概率為,乙兩個班成績優(yōu)良的概率為.

2)乙班學(xué)習(xí)的效果更好,可以從三個不現(xiàn)角度回答.

1)從莖葉圖中,知甲班學(xué)生成績不低于70分的人數(shù)共有10人,乙班學(xué)生成績不低于70分的人數(shù)共有16人,且成績不低于70分者為成績優(yōu)良”.

因此可估計甲班成績優(yōu)良的概率為,

乙兩個班成績優(yōu)良的概率為.

2)乙班學(xué)習(xí)的效果更好.

理由l:乙班樣本成績大多在70分以上,甲班樣本成績70分以下的明顯更多.

理由2:甲班樣本成績的平均分為70.2;乙班樣本成績的平均分為79.05.

理由3:甲班樣本成績的中位數(shù)為,

班樣本成績的中位數(shù)為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.

1)求曲線的普通方程和直線的直角坐標(biāo)方程;

2)設(shè)為曲線上的一個動點,求點到直線距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】試求所有由互異正奇數(shù)構(gòu)成的三元集{a,bc},使其滿足:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,平面是正三角形,的交點恰好是中點,又,.

(1)求證:;

(2)設(shè)的中點,點在線段上,若直線平面,求的長;

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重. 大氣污染可引起心悸、呼吸困難等心肺疾病。為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機的對入院50人進行了問卷調(diào)查得到了如在的列聯(lián)表:已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為.

(Ⅰ)請將右面的列聯(lián)表補充完整;

患心肺疾病

不患心肺疾病

合計

5

10

合計

50

(Ⅱ)是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由;

(Ⅲ)已知在患心肺疾病的10位女性中,有3位又患胃病.現(xiàn)在從患心肺疾病的10位女性中,選出3名進行其他方面的排查,記選出患胃病的女性人數(shù)為,求的分布列以及數(shù)學(xué)期望.

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式 其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,定義為兩點,切比雪夫距離,又設(shè)點上任意一點,稱的最小值為點到直線切比雪夫距離,記作,給出下列三個命題:

①對任意三點、,都有

②已知點和直線,則;

③到定點的距離和到切比雪夫距離相等的點的軌跡是正方形.

其中正確的命題有(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線的左右焦點分別為,為坐標(biāo)原點.為曲線右支上的點,點外角平分線上,且.若恰為頂角為的等腰三角形,則該雙曲線的離心率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點,過其準(zhǔn)線與軸的交點作直線

1)若直線與拋物線相切于點,則=_____________.

2)設(shè),若直線與拋物線交于點,且,則=_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求的普通方程和的直角坐標(biāo)方程;

2)把曲線向下平移個單位,然后各點橫坐標(biāo)變?yōu)樵瓉淼?/span>倍得到曲線(縱坐標(biāo)不變),設(shè)點是曲線上的一個動點,求它到直線的距離的最小值.

查看答案和解析>>

同步練習(xí)冊答案