,
(1)令,討論內的單調性并求極值;
(2)求證:當時,恒有
(1) 內是減函數(shù),在內是增函數(shù), 在處取得極小值 ;(2)詳見解析.

試題分析:(1)先根據(jù)求導法求導數(shù)fˊ(x),在函數(shù)的定義域內解不等式fˊ(x)>0和fˊ(x)<0,求出單調區(qū)間及極值即可.
(2)欲證x>ln2x-2a ln x+1,即證x-1-ln2x+2alnx>0,也就是要證f(x)>f(1),根據(jù)第一問的單調性即可證得.
試題解析:解(1)解:根據(jù)求導法則有
,         3分
于是,
列表如下:


2



0


遞減
極小值
遞增
故知內是減函數(shù),在內是增函數(shù),所以,在處取得極小值. 6
(2)證明:由知,的極小值
于是由上表知,對一切,恒有
從而當時,恒有,故內單調增加.
所以當時,,即
故當時,恒有.    .12
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)當a=l時,求的單調區(qū)間;
(2)若函數(shù)上是減函數(shù),求實數(shù)a的取值范圍;
(3)令,是否存在實數(shù)a,當(e是自然對數(shù)的底數(shù))時,函數(shù)g(x)最小值是3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調區(qū)間和極值;
(2)當,且時,證明:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax3+(a-2)x+c的圖象如圖所示.

(1)求函數(shù)y=f(x)的解析式;
(2)若g(x)=-2ln x在其定義域內為增函數(shù),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖是函數(shù)的導函數(shù)的圖象,給出下列命題:
①-2是函數(shù)的極值點
②1是函數(shù)的極小值點
在x=0處切線的斜率大于零
在區(qū)間(-,-2)上單調遞減
則正確命題的序號是   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)在區(qū)間[-1,2]上是減函數(shù),那么b+c(    )
A.有最大值
B.有最大值-
C.有最小值
D.有最小值-

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是定義在上的非負可導函數(shù),且滿足,對任意正數(shù),若,則必有(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設函數(shù)在定義域內可導,的圖像如右圖,則導函數(shù)的圖像可能是(   )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

定義在R上的函數(shù)y=f(x)的圖像經(jīng)過坐標原點O,且它的導函數(shù)y=f¢(x)的圖像是如圖所示的一條直線,則y=f(x)的圖像一定不經(jīng)過第     象限.

查看答案和解析>>

同步練習冊答案