【題目】某種放射性元素的原子數(shù)N隨時間t的變化規(guī)律是N=N0e﹣λt , 其中e=2.71828…為自然對數(shù)的底數(shù),N0 , λ是正的常數(shù)
(Ⅰ)當(dāng)N0=e3 , λ= , t=4時,求lnN的值
(Ⅱ)把t表示原子數(shù)N的函數(shù);并求當(dāng)N= , λ=時,t的值(結(jié)果保留整數(shù))
【答案】解:(Ⅰ)當(dāng)N0=e3 , λ=,t=4時,
N=N0e﹣λt=e3e﹣2=e,
∴l(xiāng)nN=lne=1;
(Ⅱ)∵N=N0e﹣λt ,
∴=e﹣λt ,
∴﹣λt=ln,
∴t=﹣ln(或ln),其中0<N≤N0;
當(dāng)N=,λ=時,
t=﹣10ln=10ln2=10×=10×≈7.
【解析】(Ⅰ)把N0=e3 , λ= , t=4代人公式求出lnN的值;
(Ⅱ)根據(jù)公式求出t的解析式,再計算N= , λ=時t的值.
【考點精析】本題主要考查了對數(shù)的運算性質(zhì)的相關(guān)知識點,需要掌握①加法:②減法:③數(shù)乘:④⑤才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠A、∠B、∠C所對的邊長分別是a、b、c.若sinC+sin(B﹣A)=sin2A,則△ABC的形狀為( )
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰三角形或直角三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣3)2+(y﹣4)2=4. (Ⅰ) 若直線l過點A(2,3)且被圓C截得的弦長為2 ,求直線l的方程;
(Ⅱ) 若直線l過點B(1,0)與圓C相交于P,Q兩點,求△CPQ的面積的最大值,并求此時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知b+c=2acosB. (Ⅰ)證明:A=2B
(Ⅱ)若△ABC的面積S= ,求角A的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某青年教師有一專項課題是進行“學(xué)生數(shù)學(xué)成績與物理成績的關(guān)系”的研究,他調(diào)查了某中學(xué)高二年級800名學(xué)生上學(xué)期期末考試的數(shù)學(xué)和物理成績,把成績按優(yōu)秀和不優(yōu)秀分類得到的結(jié)果是:數(shù)學(xué)和物理都優(yōu)秀的有60人,數(shù)學(xué)成績優(yōu)秀但物理不優(yōu)秀的有140人,物理成績優(yōu)秀但數(shù)學(xué)不優(yōu)秀的有60人. 附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 |
k0 | 6.635 | 7.879 | 10.828 |
K2= .
(1)能否在犯錯概率不超過0.001的前提下認為該中學(xué)學(xué)生的數(shù)學(xué)成績與物理成績有關(guān)?
(2)將上述調(diào)查所得到的頻率視為概率,從全體高二年級學(xué)生成績中,有放回地隨機抽取4名學(xué)生的成績,記抽取的4份成績中數(shù)學(xué)、物理兩科成績恰有一科優(yōu)秀的份數(shù)為X,求X的分布列和期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是遞增的等差數(shù)列,a2 , a4是方程x2﹣5x+6=0的根. (I)求{an}的通項公式;
(II)求數(shù)列{ }的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司的廣告費支出x與銷售額y(單位:萬元)之間有下列對應(yīng)數(shù)據(jù)
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
回歸方程為 =bx+a,其中b= ,a= ﹣b .
(1)畫出散點圖,并判斷廣告費與銷售額是否具有相關(guān)關(guān)系;
(2)根據(jù)表中提供的數(shù)據(jù),求出y與x的回歸方程 =bx+a;
(3)預(yù)測銷售額為115萬元時,大約需要多少萬元廣告費.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖中的程序框圖的算法思路來源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的a,b,i的值分別為8,10,0,則輸出的a和i和值分別為( )
A.2,5
B.2,4
C.0,4
D.0,5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓C: =1(0<b<3)的右焦點為F,P為橢圓上一動點,連接PF交橢圓于Q點,且|PQ|的最小值為 .
(1)求橢圓方程;
(2)若 ,求直線PQ的方程;
(3)M,N為橢圓上關(guān)于x軸對稱的兩點,直線PM,PN分別與x軸交于R,S,求證:|OR||OS|為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com