【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面, 垂直于和,為棱上的點(diǎn),,.
(1)若為棱的中點(diǎn),求證://平面;
(2)當(dāng)時(shí),求平面與平面所成的銳二面角的余弦值;
(3)在第(2)問(wèn)條件下,設(shè)點(diǎn)是線段上的動(dòng)點(diǎn),與平面所成的角為,求當(dāng)取最大值時(shí)點(diǎn)的位置.
【答案】(1)見解析;(2);(3)即點(diǎn)N在線段CD上且
【解析】
(1)取線段SC的中點(diǎn)E,連接ME,ED.可證是平行四邊形,從而有,則可得線面平行;
(2)以點(diǎn)A為坐標(biāo)原點(diǎn),建立分別以AD、AB、AS所在的直線為x軸、y軸、z軸建立空間直角坐標(biāo)系,求出兩平面與平面的法向量,由法向量夾角的余弦值可得二面角的余弦值;
(3)設(shè),其中,求出,由MN與平面所成角的正弦值為與平面的法向量夾角余弦值的絕對(duì)值可求得結(jié)論.
(1)證明:取線段SC的中點(diǎn)E,連接ME,ED.
在中,ME為中位線,∴且,
∵且,∴且,
∴四邊形AMED為平行四邊形.
∴.
∵平面SCD,平面SCD,
∴平面SCD.
(2)解:如圖所示以點(diǎn)A為坐標(biāo)原點(diǎn),建立分別以AD、AB、AS所在的直線為x軸、y軸、z軸建立空間直角坐標(biāo)系,則,,,,,
由條件得M為線段SB近B點(diǎn)的三等分點(diǎn).
于是,即,
設(shè)平面AMC的一個(gè)法向量為,則,
將坐標(biāo)代入并取,得.
另外易知平面SAB的一個(gè)法向量為,
所以平面AMC與平面SAB所成的銳二面角的余弦為.
(3)設(shè),其中.
由于,所以.
所以,
可知當(dāng),即時(shí)分母有最小值,此時(shí)有最大值,
此時(shí),,即點(diǎn)N在線段CD上且.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若對(duì)任意實(shí)數(shù)都有函數(shù)的圖象與直線相切,則稱函數(shù)為“恒切函數(shù)”,設(shè)函數(shù),其中.
(1)討論函數(shù)的單調(diào)性;
(2)已知函數(shù)為“恒切函數(shù)”,
①求實(shí)數(shù)的取值范圍;
②當(dāng)取最大值時(shí),若函數(shù)也為“恒切函數(shù)”,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)a=2,求函數(shù)的極值;
(2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求證:當(dāng)時(shí),函數(shù)在上存在唯一的零點(diǎn);
(Ⅱ)當(dāng)時(shí),若存在,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)單位向量 對(duì)于任意實(shí)數(shù)λ都有| + |≤| ﹣λ |成立,則向量 的夾角為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=4x2-kx-8.
(1)若函數(shù)y=f(x)在區(qū)間[2,10]上單調(diào),求實(shí)數(shù)k的取值范圍;
(2)若y=f(x)在區(qū)間(-∞,2]上有最小值-12,求實(shí)數(shù)k的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若將函數(shù)f(x)=sin(2x+ )的圖象向右平移個(gè)單位長(zhǎng)度,可以使f(x)成為奇函數(shù),則的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè){an}是首項(xiàng)為a,公差為d的等差數(shù)列(d≠0),Sn是其前n項(xiàng)和.記bn= ,n∈N* , 其中c為實(shí)數(shù).
(1)若c=0,且b1 , b2 , b4成等比數(shù)列,證明:Snk=n2Sk(k,n∈N*);
(2)若{bn}是等差數(shù)列,證明:c=0.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com