精英家教網 > 高中數學 > 題目詳情

(本題滿分18分)本題共有3個小題,第1小題滿分6分,第2小題滿分7分,第3小題滿分5分.

  已知各項都為正數的數列,其中的前n項的和.

(1);

(2)已知p(2)是給定的某個正整數,數列

(),求;

(3)化簡

(本題滿分18分)本題共有3個小題,第1小題滿分6分,第2小題滿分7分,第3小題滿分5分.

(理科)解(1),

 

 

 是首項為,公差為2的等差數列;是首項為,公差為2的等差數列.又,可得

   ∴

所以,所求數列的通項公式為

  (2)是給定的正整數(),,

   數列是項數為p項的有窮數列.又

 ,…

  歸納可得

(3)由(2)可知,進一步可化為:

所以,

            

            

            

(文科)

∴數列是等差比數列,且公差比p=2.

  (2)∵數列是等差比數列,且公差比p=2,

,即數列

.于是,

    ,

    

    …

    

將上述個等式相加,得

       .

∴數列的通項公式為

 (3)由(2)可知,

         

  于是,

所以,數列是等差比數列,且公差比為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)

在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中.設.

(1)若,,,求方程在區(qū)間內的解集;

(2)若點是過點且法向量為的直線上的動點.當時,設函數的值域為集合,不等式的解集為集合. 若恒成立,求實數的最大值;

(3)根據本題條件我們可以知道,函數的性質取決于變量、的值. 當時,試寫出一個條件,使得函數滿足“圖像關于點對稱,且在取得最小值”.(說明:請寫出你的分析過程.本小題將根據你對問題探究的完整性和在研究過程中所體現的思維層次,給予不同的評分.)

查看答案和解析>>

科目:高中數學 來源:上海市普陀區(qū)2010屆高三第二次模擬考試理科數學試題 題型:解答題

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中.設.
(1)若,,求方程在區(qū)間內的解集;
(2)若點是過點且法向量為的直線上的動點.當時,設函數的值域為集合,不等式的解集為集合. 若恒成立,求實數的最大值;
(3)根據本題條件我們可以知道,函數的性質取決于變量、的值. 當時,試寫出一個條件,使得函數滿足“圖像關于點對稱,且在取得最小值”.(說明:請寫出你的分析過程.本小題將根據你對問題探究的完整性和在研究過程中所體現的思維層次,給予不同的評分.)

查看答案和解析>>

科目:高中數學 來源:2011-2012學年上海市長寧區(qū)高三教學質量測試理科數學 題型:解答題

(本小題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

(文)已知數列中,

(1)求證數列不是等比數列,并求該數列的通項公式;

(2)求數列的前項和;

(3)設數列的前項和為,若對任意恒成立,求的最小值.

 

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年上海市長寧區(qū)高三教學質量測試理科數學 題型:解答題

本小題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

設函數是定義域為R的奇函數.

(1)求k值;

(2)(文)當時,試判斷函數單調性并求不等式f(x2+2x)+f(x-4)>0的解集;

(理)若f(1)<0,試判斷函數單調性并求使不等式恒成立的的取值范圍;

(3)若f(1)=,且g(x)=a 2xa - 2x-2m f(x) 在[1,+∞)上的最小值為-2,求m的值.

 

 

查看答案和解析>>

科目:高中數學 來源:上海市普陀區(qū)2010屆高三第二次模擬考試理科數學試題 題型:解答題

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)

在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中.設.

(1)若,,求方程在區(qū)間內的解集;

(2)若點是過點且法向量為的直線上的動點.當時,設函數的值域為集合,不等式的解集為集合. 若恒成立,求實數的最大值;

(3)根據本題條件我們可以知道,函數的性質取決于變量、的值. 當時,試寫出一個條件,使得函數滿足“圖像關于點對稱,且在取得最小值”.(說明:請寫出你的分析過程.本小題將根據你對問題探究的完整性和在研究過程中所體現的思維層次,給予不同的評分.)

 

查看答案和解析>>

同步練習冊答案