【題目】已知等比數(shù)列{an}的前n項和為Sn,公比q>0,S2=2a2-2,S3=a4-2,數(shù)列{an}滿足a2=4b1,nbn+1-(n+1)bn=n2+n,(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)證明數(shù)列{}為等差數(shù)列;
(3)設數(shù)列{cn}的通項公式為:Cn=,其前n項和為Tn,求T2n.
【答案】(1) ;(2)證明見解析;(3).
【解析】
(1)由等比數(shù)列的基本量法求解;
(2)求得,再證為常數(shù)即可;
(3)先并項,設,然后有,用錯位相減法計算.
(1)由于等比數(shù)列{an}的前n項和為Sn,公比q>0,S2=2a2-2,S3=a4-2,
所以S3-S2=a4-2a2=a3,
整理得,
由于a2≠0,
所以q2-q-2=0,由于q>0,
解得q=2.
由于a1+a2=2a2-2,解得a1=2,
所以.
(2)數(shù)列{an}滿足a2=4b1,解得b1=1,
由于nbn+1-(n+1)bn=n2+n,
所以(常數(shù)).
所以數(shù)列數(shù)列{}是以1為首項1為公差的等差數(shù)列.
(3)由于數(shù)列數(shù)列{}是以1為首項1為公差的等差數(shù)列.
所以,解得
由于數(shù)列{cn}的通項公式為:Cn=,
所以令==(4n-1)4n-1.
所以①,
4②,
①-②得:-(4n-1)4n,
整理得,
故:.
科目:高中數(shù)學 來源: 題型:
【題目】拋物線頂點在原點,焦點在x軸上,且過點(4,4),焦點為F.
(1)求拋物線的焦點坐標和標準方程;
(2)P是拋物線上一動點,M是PF的中點,求M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市交通部門為了對該城市共享單車加強監(jiān)管,隨機選取了100人就該城市共享單車的推行情況進行問卷調查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照,,,,分成5組,制成如圖所示頻率分直方圖.
(1)求圖中的值及這組數(shù)據(jù)的眾數(shù);
(2)已知滿意度評分值在內的男生數(shù)與女生數(shù)的比為,若在滿意度評分值為的人中隨機抽取2人進行座談,求2人均為男生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系中,動點與兩定點連線的斜率之積為,記點的軌跡為曲線.
(1)求曲線的方程;
(2)若過點的直線與曲線交于兩點,曲線上是否存在點使得四邊形為平行四邊形?若存在,求直線的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是圓上的任意一點,是過點且與軸垂直的直線,是直線與軸的交點,點在直線上,且滿足.當點在圓上運動時,記點的軌跡為曲線.
(1)求曲線的方程;
(2)已知點,過的直線交曲線于兩點,交直線于點.判定直線的斜率是否依次構成等差數(shù)列?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列是等差數(shù)列,數(shù)列是各項都為正數(shù)的等比數(shù)列,且.
(1)求數(shù)列,的通項公式;
(2)設,,,試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某比賽為甲、乙兩名運動員制訂下列發(fā)球規(guī)則:規(guī)則一:投擲一枚硬幣,出現(xiàn)正面向上,甲發(fā)球,否則乙發(fā)球;規(guī)則二:從裝有個紅球與個黑球的布袋中隨機地取出個球,如果同色,甲發(fā)球,否則乙發(fā)球;規(guī)則三:從裝有個紅球與個黑球的布袋中隨機地取出個球,如果同色,甲發(fā)球,否則乙發(fā)球.
其中對甲、乙公平的規(guī)則是( )
A.規(guī)則一和規(guī)則二B.規(guī)則一和規(guī)則三C.規(guī)則二和規(guī)則三D.規(guī)則二
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com