1.如圖,△A'B'C'是△ABC用“斜二測畫法”畫出的直觀圖,其中O'B'=O'C'=1,O'A'=$\frac{{\sqrt{3}}}{2}$,那么△ABC是一個( 。
A.等邊三角形B.直角三角形
C.鈍角三角形D.三邊互不相等的三角形

分析 根據(jù)“斜二測畫法”的畫圖法則,結合已知,可得△ABC中,BO=CO=1,AO=$\sqrt{3}$,結合勾股定理,求出△ABC的三邊長,可得△ABC的形狀.

解答 解:由已知中△ABC的直觀圖中O'B'=O'C'=1,O'A'=$\frac{{\sqrt{3}}}{2}$,
∴△ABC中,BO=CO=1,AO=$\sqrt{3}$,
由勾股定理得:AB=AC=2,
又由BC=2,
故△ABC為等邊三角形,
故選:A.

點評 本題考查的知識點是斜二側畫幾何體的直觀圖,三角形形狀的判斷,難度不大,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.已知復數(shù)z滿足(1-i)z=i,則復數(shù)$\overline{z}$在復平面內(nèi)的對應點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知雙曲線兩個焦點坐標分別是F1(-5,0),F(xiàn)2(5,0),雙曲線上一點到的距離之差的絕對值等于6,求雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.交警隨機抽取了途經(jīng)某服務站的40輛小型轎車在經(jīng)過某區(qū)間路段的車速(單位:km/h),現(xiàn)將其分成六組為[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如圖所示的頻率分布直方圖.
(Ⅰ)某小型轎車途經(jīng)該路段,其速度在70km/h以上的概率是多少?
(Ⅱ)若對車速在[60,65),[65,70)兩組內(nèi)進一步抽測兩輛小型轎車,求至少有一輛小型轎車速度在[60,65)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.任取x,y∈[0,3],則x+y>4的概率為$\frac{2}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若函數(shù)f(x)=|2x-1|-m有兩個不同的零點,則實數(shù)m的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.“α=$\frac{π}{6}$”是$tan({π-a})=-\frac{{\sqrt{3}}}{3}$的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(m,1),如果向量$\overrightarrow{a}$+2$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$平行,則$\overrightarrow{a}$+$\overrightarrow$=$(-\frac{3}{2},3)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖所示,在直角坐標系xOy中,拋物線C:y2=4x,Q(-1,0),設點P是第一象限內(nèi)拋物線C上一點,且PQ為拋物線C的切線.
(1)求點P的坐標;
(2)圓C1、C2均與直線OP相切于點P,且均與x軸相切,求圓C1、C2的半徑之和.

查看答案和解析>>

同步練習冊答案